scispace - formally typeset
Search or ask a question
Institution

Memorial Sloan Kettering Cancer Center

HealthcareNew York, New York, United States
About: Memorial Sloan Kettering Cancer Center is a healthcare organization based out in New York, New York, United States. It is known for research contribution in the topics: Cancer & Population. The organization has 30293 authors who have published 65381 publications receiving 4462534 citations. The organization is also known as: MSKCC & New York Cancer Hospital.


Papers
More filters
Journal Article
TL;DR: The accretion of AVO in surviving progenies of irradiated cells, and the increased incidence of clonogenic death after inhibition of vacuolar H+-ATPase suggest that formation of acidic organelles represents a novel defense mechanism against radiation damage.
Abstract: The mechanisms underlying neoplastic epithelial cell killing by ionizing radiation are largely unknown. We discovered a novel response to radiation manifested by autophagy and the development of acidic vesicular organelles (AVO). Acidification of AVO was mediated by the vacuolar H+-ATPase. Staining with the lysosomotropic agent acridine orange enabled us to quantify AVO accumulation and to demonstrate their time- and dose-dependent appearance. The appearance of AVO occurred in the presence of the pan-caspase inhibitor z-Val-Ala-Asp(Ome)-fluoromethyl ketone, but was inhibited by 3-methyladenine, an inhibitor of autophagy. The accretion of AVO in surviving progenies of irradiated cells, and the increased incidence of clonogenic death after inhibition of vacuolar H+-ATPase suggest that formation of acidic organelles represents a novel defense mechanism against radiation damage.

986 citations

Journal ArticleDOI
TL;DR: The current state of the art of systemic osteosarcoma therapy is reviewed by focusing on the experiences of cooperative osteosARcoma groups, shedding light on questions and challenges posed by the aggressiveness of the tumor, and potential future directions that may be critical to progress in the prognosis of high-grade osteosArcoma.

980 citations

Journal ArticleDOI
TL;DR: This Review highlights emerging mechanisms of acquired resistance to contemporary therapies targeting the AR pathway, which fall into the three broad categories of restored AR signalling, AR bypass signalling and complete AR independence.
Abstract: During the past 10 years, preclinical studies implicating sustained androgen receptor (AR) signalling as the primary driver of castration-resistant prostate cancer (CRPC) have led to the development of novel agents targeting the AR pathway that are now in widespread clinical use. These drugs prolong the survival of patients with late-stage prostate cancer but are not curative. In this Review, we highlight emerging mechanisms of acquired resistance to these contemporary therapies, which fall into the three broad categories of restored AR signalling, AR bypass signalling and complete AR independence. This diverse range of resistance mechanisms presents new challenges for long-term disease control, which may be addressable through early use of combination therapies guided by recent insights from genomic landscape studies of CRPC.

980 citations

Journal ArticleDOI
11 Feb 1994-Cell
TL;DR: Loss of gamma chain does not appear to perturb T cell development, since both thymic and peripheral T cell populations appear normal, and these mice represent an important tool for evaluating the role of these receptors in humoral and cellular immune responses.

979 citations

Journal ArticleDOI
Mark Gerstein1, Zhi John Lu1, Eric L. Van Nostrand2, Chao Cheng1, Bradley I. Arshinoff3, Tao Liu4, Kevin Y. Yip1, R. Robilotto1, Andreas Rechtsteiner5, Kohta Ikegami6, P. Alves1, A. Chateigner, Marc D. Perry7, Mitzi Morris8, Raymond K. Auerbach1, X. Feng9, Jing Leng1, A. Vielle10, Wei Niu1, Kahn Rhrissorrakrai8, Ashish Agarwal1, Roger P. Alexander1, Galt P. Barber5, Cathleen M. Brdlik2, J. Brennan6, Jeremy Brouillet2, Adrian Carr, Ming Sin Cheung10, Hiram Clawson5, Sergio Contrino, Luke Dannenberg11, Abby F. Dernburg12, Arshad Desai13, L. Dick14, Andréa C. Dosé12, Jiang Du1, Thea A. Egelhofer5, Sevinc Ercan6, Ghia Euskirchen1, Brent Ewing15, Elise A. Feingold16, Reto Gassmann13, Peter J. Good16, Philip Green15, Francois Gullier, M. Gutwein8, Mark S. Guyer16, Lukas Habegger1, Ting Han17, Jorja G. Henikoff18, Stefan R. Henz19, Angie S. Hinrichs5, H. Holster11, Tony Hyman19, A. Leo Iniguez11, J. Janette1, M. Jensen6, Masaomi Kato1, W. James Kent5, E. Kephart7, Vishal Khivansara17, Ekta Khurana1, John Kim17, P. Kolasinska-Zwierz10, Eric C. Lai20, Isabel J. Latorre10, Amber Leahey15, Suzanna E. Lewis12, Paul Lloyd7, Lucas Lochovsky1, Rebecca F. Lowdon16, Yaniv Lubling21, Rachel Lyne, Michael J. MacCoss15, Sebastian D. Mackowiak22, Marco Mangone8, Sheldon J. McKay23, D. Mecenas8, Gennifer E. Merrihew15, David M. Miller24, A. Muroyama13, John I. Murray15, Siew Loon Ooi18, Hoang Pham12, T. Phippen5, Elicia Preston15, Nikolaus Rajewsky22, Gunnar Rätsch19, Heidi Rosenbaum11, Joel Rozowsky1, Kim Rutherford, P. Ruzanov7, Mihail Sarov19, Rajkumar Sasidharan1, Andrea Sboner1, P. Scheid8, Eran Segal21, Hyunjin Shin4, C. Shou1, Frank J. Slack1, C. Slightam2, Richard J.H. Smith, William C. Spencer24, Eo Stinson12, S. Taing4, Teruaki Takasaki5, D. Vafeados15, Ksenia Voronina13, Guilin Wang1, Nicole L. Washington12, Christina M. Whittle6, Beijing Wu2, Koon-Kiu Yan1, Georg Zeller, Z. Zha7, Mei Zhong1, Xingliang Zhou6, Julie Ahringer10, Susan Strome5, Kristin C. Gunsalus25, Gos Micklem, X. Shirley Liu4, Valerie Reinke1, Stuart K. Kim2, LaDeana W. Hillier15, Steven Henikoff18, Fabio Piano25, Michael Snyder1, Lincoln Stein23, Jason D. Lieb6, Robert H. Waterston15 
24 Dec 2010-Science
TL;DR: These studies identified regions of the nematode and fly genomes that show highly occupied targets (or HOT) regions where DNA was bound by more than 15 of the transcription factors analyzed and the expression of related genes were characterized, providing insights into the organization, structure, and function of the two genomes.
Abstract: We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor-binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor-binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome.

978 citations


Authors

Showing all 30708 results

NameH-indexPapersCitations
Gordon H. Guyatt2311620228631
Edward Giovannucci2061671179875
Irving L. Weissman2011141172504
Craig B. Thompson195557173172
Joan Massagué189408149951
Gad Getz189520247560
Chris Sander178713233287
Richard B. Lipton1762110140776
Richard K. Wilson173463260000
George P. Chrousos1691612120752
Stephen J. Elledge162406112878
Murray F. Brennan16192597087
Lewis L. Lanier15955486677
David W. Bates1591239116698
Dan R. Littman157426107164
Network Information
Related Institutions (5)
University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

99% related

Mayo Clinic
169.5K papers, 8.1M citations

95% related

Brigham and Women's Hospital
110.5K papers, 6.8M citations

95% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

95% related

University of California, San Francisco
186.2K papers, 12M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023163
2022413
20214,330
20204,389
20194,156
20183,686