scispace - formally typeset
Search or ask a question
Institution

Memorial Sloan Kettering Cancer Center

HealthcareNew York, New York, United States
About: Memorial Sloan Kettering Cancer Center is a healthcare organization based out in New York, New York, United States. It is known for research contribution in the topics: Cancer & Population. The organization has 30293 authors who have published 65381 publications receiving 4462534 citations. The organization is also known as: MSKCC & New York Cancer Hospital.


Papers
More filters
Journal ArticleDOI
15 Feb 2012-Nature
TL;DR: It is reported that 2HG-producing IDH mutants can prevent the histone demethylation that is required for lineage-specific progenitor cells to differentiate into terminally differentiated cells, and that inhibition of histone methylation can be sufficient to block the differentiation of non-transformed cells.
Abstract: Recurrent mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 have been identified in gliomas, acute myeloid leukaemias (AML) and chondrosarcomas, and share a novel enzymatic property of producing 2-hydroxyglutarate (2HG) from α-ketoglutarate. Here we report that 2HG-producing IDH mutants can prevent the histone demethylation that is required for lineage-specific progenitor cells to differentiate into terminally differentiated cells. In tumour samples from glioma patients, IDH mutations were associated with a distinct gene expression profile enriched for genes expressed in neural progenitor cells, and this was associated with increased histone methylation. To test whether the ability of IDH mutants to promote histone methylation contributes to a block in cell differentiation in non-transformed cells, we tested the effect of neomorphic IDH mutants on adipocyte differentiation in vitro. Introduction of either mutant IDH or cell-permeable 2HG was associated with repression of the inducible expression of lineage-specific differentiation genes and a block to differentiation. This correlated with a significant increase in repressive histone methylation marks without observable changes in promoter DNA methylation. Gliomas were found to have elevated levels of similar histone repressive marks. Stable transfection of a 2HG-producing mutant IDH into immortalized astrocytes resulted in progressive accumulation of histone methylation. Of the marks examined, increased H3K9 methylation reproducibly preceded a rise in DNA methylation as cells were passaged in culture. Furthermore, we found that the 2HG-inhibitable H3K9 demethylase KDM4C was induced during adipocyte differentiation, and that RNA-interference suppression of KDM4C was sufficient to block differentiation. Together these data demonstrate that 2HG can inhibit histone demethylation and that inhibition of histone demethylation can be sufficient to block the differentiation of non-transformed cells.

1,651 citations

Journal ArticleDOI
28 Jun 2012-Nature
TL;DR: KRAS mutations are identified as frequent drivers of acquired resistance to cetuximab in colorectal cancers, indicate that the emergence of KRAS mutant clones can be detected non-invasively months before radiographic progression and suggest early initiation of a MEK inhibitor as a rational strategy for delaying or reversing drug resistance.
Abstract: A main limitation of therapies that selectively target kinase signalling pathways is the emergence of secondary drug resistance. Cetuximab, a monoclonal antibody that binds the extracellular domain of epidermal growth factor receptor (EGFR), is effective in a subset of KRAS wild-type metastatic colorectal cancers. After an initial response, secondary resistance invariably ensues, thereby limiting the clinical benefit of this drug. The molecular bases of secondary resistance to cetuximab in colorectal cancer are poorly understood. Here we show that molecular alterations (in most instances point mutations) of KRAS are causally associated with the onset of acquired resistance to anti-EGFR treatment in colorectal cancers. Expression of mutant KRAS under the control of its endogenous gene promoter was sufficient to confer cetuximab resistance, but resistant cells remained sensitive to combinatorial inhibition of EGFR and mitogen-activated protein-kinase kinase (MEK). Analysis of metastases from patients who developed resistance to cetuximab or panitumumab showed the emergence of KRAS amplification in one sample and acquisition of secondary KRAS mutations in 60% (6 out of 10) of the cases. KRAS mutant alleles were detectable in the blood of cetuximab-treated patients as early as 10 months before radiographic documentation of disease progression. In summary, the results identify KRAS mutations as frequent drivers of acquired resistance to cetuximab in colorectal cancers, indicate that the emergence of KRAS mutant clones can be detected non-invasively months before radiographic progression and suggest early initiation of a MEK inhibitor as a rational strategy for delaying or reversing drug resistance.

1,645 citations

Journal ArticleDOI
30 Sep 2010-Nature
TL;DR: The structure-guided discovery of PLX4032 (RG7204), a potent inhibitor of oncogenic B-RAF kinase activity, and a remarkably high 81% response rate in metastatic melanoma patients treated at an oral dose of 960 mg twice daily are described, demonstrating that BRAF-mutant melanomas are highly dependent on B- RAF kinases activity.
Abstract: B-RAF is the most frequently mutated protein kinase in human cancers.1 The finding that oncogenic mutations in BRAF are common in melanoma2 followed by the demonstration that these tumors are dependent on the RAF/MEK/ERK pathway3 offered hope that inhibition of B-RAF kinase activity could benefit melanoma patients. Herein, we describe the structure-guided discovery of PLX4032 (RG7204), a potent inhibitor of oncogenic B-RAF kinase activity. Preclinical experiments demonstrated that PLX4032 selectively blocked the RAF/MEK/ERK pathway in BRAF mutant cells and caused regression of BRAF mutant xenografts.4 Toxicology studies confirmed a wide safety margin consistent with the high degree of selectivity, enabling Phase 1 clinical trials using a crystalline formulation of PLX4032.5 In a subset of melanoma patients, pathway inhibition was monitored in paired biopsy specimens collected before treatment initiation and following two weeks of treatment. This analysis revealed substantial inhibition of ERK phosphorylation, yet clinical evaluation did not show tumor regressions. At higher drug exposures afforded by a new amorphous drug formulation,4,5 greater than 80% inhibition of ERK phosphorylation in the tumors of patients correlated with clinical response. Indeed, the Phase 1 clinical data revealed a remarkably high 81% response rate in metastatic melanoma patients treated at an oral dose of 960 mg twice daily.5 These data demonstrate that BRAF-mutant melanomas are highly dependent on B-RAF kinase activity.

1,641 citations

Journal ArticleDOI
A. Gordon Robertson1, Jaegil Kim2, Hikmat Al-Ahmadie3, Joaquim Bellmunt4  +167 moreInstitutions (16)
19 Oct 2017-Cell
TL;DR: An analysis of 412 muscle-invasive bladder cancers characterized by multiple TCGA analytical platforms identified 5 expression subtypes that may stratify response to different treatments and identified a poor-survival "neuronal" subtype in which the majority of tumors lacked small cell or neuroendocrine histology.

1,638 citations

Journal ArticleDOI
18 Jun 2009-Nature
TL;DR: It is shown that breast cancer metastasis to the brain involves mediators of extravasation through non-fenestrated capillaries, complemented by specific enhancers of blood–brain barrier crossing and brain colonization.
Abstract: The molecular basis for breast cancer metastasis to the brain is largely unknown. Brain relapse typically occurs years after the removal of a breast tumour, suggesting that disseminated cancer cells must acquire specialized functions to take over this organ. Here we show that breast cancer metastasis to the brain involves mediators of extravasation through non-fenestrated capillaries, complemented by specific enhancers of blood-brain barrier crossing and brain colonization. We isolated cells that preferentially infiltrate the brain from patients with advanced disease. Gene expression analysis of these cells and of clinical samples, coupled with functional analysis, identified the cyclooxygenase COX2 (also known as PTGS2), the epidermal growth factor receptor (EGFR) ligand HBEGF, and the alpha2,6-sialyltransferase ST6GALNAC5 as mediators of cancer cell passage through the blood-brain barrier. EGFR ligands and COX2 were previously linked to breast cancer infiltration of the lungs, but not the bones or liver, suggesting a sharing of these mediators in cerebral and pulmonary metastases. In contrast, ST6GALNAC5 specifically mediates brain metastasis. Normally restricted to the brain, the expression of ST6GALNAC5 in breast cancer cells enhances their adhesion to brain endothelial cells and their passage through the blood-brain barrier. This co-option of a brain sialyltransferase highlights the role of cell-surface glycosylation in organ-specific metastatic interactions.

1,638 citations


Authors

Showing all 30708 results

NameH-indexPapersCitations
Gordon H. Guyatt2311620228631
Edward Giovannucci2061671179875
Irving L. Weissman2011141172504
Craig B. Thompson195557173172
Joan Massagué189408149951
Gad Getz189520247560
Chris Sander178713233287
Richard B. Lipton1762110140776
Richard K. Wilson173463260000
George P. Chrousos1691612120752
Stephen J. Elledge162406112878
Murray F. Brennan16192597087
Lewis L. Lanier15955486677
David W. Bates1591239116698
Dan R. Littman157426107164
Network Information
Related Institutions (5)
University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

99% related

Mayo Clinic
169.5K papers, 8.1M citations

95% related

Brigham and Women's Hospital
110.5K papers, 6.8M citations

95% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

95% related

University of California, San Francisco
186.2K papers, 12M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023163
2022413
20214,330
20204,389
20194,156
20183,686