scispace - formally typeset
Search or ask a question
Institution

Memorial Sloan Kettering Cancer Center

HealthcareNew York, New York, United States
About: Memorial Sloan Kettering Cancer Center is a healthcare organization based out in New York, New York, United States. It is known for research contribution in the topics: Cancer & Population. The organization has 30293 authors who have published 65381 publications receiving 4462534 citations. The organization is also known as: MSKCC & New York Cancer Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: During progression from tumour growth to metastasis, specific integrin signals enable cancer cells to detach from neighbouring cells, re-orientate their polarity during migration, and survive and proliferate in foreign microenvironments.
Abstract: During progression from tumour growth to metastasis, specific integrin signals enable cancer cells to detach from neighbouring cells, re-orientate their polarity during migration, and survive and proliferate in foreign microenvironments. There is increasing evidence that certain integrins associate with receptor tyrosine kinases (RTKs) to activate signalling pathways that are necessary for tumour invasion and metastasis. The effect of these integrins might be especially important in cancer cells that have activating mutations, or amplifications, of the genes that encode these RTKs.

1,465 citations

Journal ArticleDOI
TL;DR: Progression-free and overall survival with interferon-alpha treatment can be compared with new therapies in phase II and III clinical investigations and the prognostic model is suitable for risk stratification of phase III trials using interferons-alpha as the comparative treatment arm.
Abstract: PURPOSE: To define outcome data and prognostic criteria for patients with metastatic renal cell carcinoma (RCC) treated with interferon-alfa as initial systemic therapy. The data can be applied to design and interpretation of clinical trials of new agents and treatment programs against this refractory malignancy. PATIENTS AND METHODS: Four hundred sixty-three patients with advanced RCC administered interferon-α as first-line systemic therapy on six prospective clinical trials were the subjects of this retrospective analysis. Three risk categories for predicting survival were identified on the basis of five pretreatment clinical features by a stratified Cox proportional hazards model. RESULTS: The median overall survival time was 13 months. The median time to progression was 4.7 months. Five variables were used as risk factors for short survival: low Karnofsky performance status, high lactate dehydrogenase, low serum hemoglobin, high corrected serum calcium, and time from initial RCC diagnosis to start of ...

1,462 citations

Journal ArticleDOI
TL;DR: It is shown that mutations in KRAS are associated with a lack of sensitivity to either gefitinib or erlotinib, suggesting that treatment decisions regarding use of these kinase inhibitors might be improved by determining the mutational status of both EGFR and KRAS.
Abstract: Background Somatic mutations in the gene for the epidermal growth factor receptor (EGFR) are found in adenocarcinomas of the lung and are associated with sensitivity to the kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva). Lung adenocarcinomas also harbor activating mutations in the downstream GTPase, KRAS, and mutations in EGFR and KRAS appear to be mutually exclusive.

1,457 citations

Journal ArticleDOI
TL;DR: A better understanding of how these variables cooperate to affect tumour–host interactions is needed to optimize the implementation of precision immunotherapy.
Abstract: Checkpoint inhibitor-based immunotherapies that target cytotoxic T lymphocyte antigen 4 (CTLA4) or the programmed cell death 1 (PD1) pathway have achieved impressive success in the treatment of different cancer types. Yet, only a subset of patients derive clinical benefit. It is thus critical to understand the determinants driving response, resistance and adverse effects. In this Review, we discuss recent work demonstrating that immune checkpoint inhibitor efficacy is affected by a combination of factors involving tumour genomics, host germline genetics, PD1 ligand 1 (PDL1) levels and other features of the tumour microenvironment, as well as the gut microbiome. We focus on recently identified molecular and cellular determinants of response. A better understanding of how these variables cooperate to affect tumour-host interactions is needed to optimize the implementation of precision immunotherapy.

1,452 citations

Journal ArticleDOI
09 Aug 2007-Nature
TL;DR: DNMT3L recognizes histone H3 tails that are unmethylated at lysine 4 and induces de novo DNA methylation by recruitment or activation of DNMT3A2, and substitution of key residues in the binding site eliminated the H3 tail–DN MT3L interaction.
Abstract: Mammals use DNA methylation for the heritable silencing of retrotransposons and imprinted genes and for the inactivation of the X chromosome in females. The establishment of patterns of DNA methylation during gametogenesis depends in part on DNMT3L, an enzymatically inactive regulatory factor that is related in sequence to the DNA methyltransferases DNMT3A and DNMT3B1,2. The main proteins that interact in vivo with the product of an epitope-tagged allele of the endogenous Dnmt3L gene were identified by mass spectrometry as DNMT3A2, DNMT3B and the four core histones. Peptide interaction assays showed that DNMT3L specifically interacts with the extreme amino terminus of histone H3; this interaction was strongly inhibited by methylation at lysine 4 of histone H3 but was insensitive to modifications at other positions. Crystallographic studies of human DNMT3L showed that the protein has a carboxy-terminal methyltransferase-like domain and an N-terminal cysteine-rich domain. Cocrystallization of DNMT3L with the tail of histone H3 revealed that the tail bound to the cysteine-rich domain of DNMT3L, and substitution of key residues in the binding site eliminated the H3 tail-DNMT3L interaction. These data indicate that DNMT3L recognizes histone H3 tails that are unmethylated at lysine 4 and induces de novo DNA methylation by recruitment or activation of DNMT3A2.

1,450 citations


Authors

Showing all 30708 results

NameH-indexPapersCitations
Gordon H. Guyatt2311620228631
Edward Giovannucci2061671179875
Irving L. Weissman2011141172504
Craig B. Thompson195557173172
Joan Massagué189408149951
Gad Getz189520247560
Chris Sander178713233287
Richard B. Lipton1762110140776
Richard K. Wilson173463260000
George P. Chrousos1691612120752
Stephen J. Elledge162406112878
Murray F. Brennan16192597087
Lewis L. Lanier15955486677
David W. Bates1591239116698
Dan R. Littman157426107164
Network Information
Related Institutions (5)
University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

99% related

Mayo Clinic
169.5K papers, 8.1M citations

95% related

Brigham and Women's Hospital
110.5K papers, 6.8M citations

95% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

95% related

University of California, San Francisco
186.2K papers, 12M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023163
2022413
20214,330
20204,389
20194,156
20183,686