scispace - formally typeset
Search or ask a question
Institution

Meteor

About: Meteor is a based out in . It is known for research contribution in the topics: Meteoroid & Meteor (satellite). The organization has 327 authors who have published 367 publications receiving 6423 citations. The organization is also known as: shooting star & meteors.


Papers
More filters
Journal ArticleDOI
L. Otto1, J.T.F. Zimmerman, G.K. Furnes, M. Mork2, R. Saetre, G. Becker 
TL;DR: In this article, a review of the physical properties of the North Sea is presented, focusing on the processes that are responsible for the physical environment, including the dominant feature of the tidal motion.

530 citations

Journal ArticleDOI
26 Mar 2009-Nature
TL;DR: A dedicated search along the approach trajectory recovered 47 meteorites, fragments of a single body named Almahata Sitta, with a total mass of 3.95 kg, identifying the asteroid as F class, now firmly linked to dark carbon-rich anomalous ureilites, a material so fragile it was not previously represented in meteorite collections.
Abstract: On 6 October 2008, a small Earth-bound asteroid designated 2008 TC3 was discovered by the Catalina Sky Survey. Some 19 hours — and many astronomical observations — later it entered the atmosphere and disintegrated at 37 km altitude. No macroscopic fragments were expected to have survived but a dedicated search along the approach trajectory in a desert in northern Sudan has recovered 47 meteorites, fragments of a single body named Almahata Sitta, with a total mass of 3.95 kg. The asteroid and meteorite reflectance spectra identify the asteroid as surface matter from a class 'F' asteroid, material so fragile that it was not previously represented in meteorite collections. To have recovered meteorites from a known class of asteroids is a coup on a par with a successful spacecraft sample-return mission — without the rocket science. On 6 October 2008, a small asteroid designated 2008 TC3 hit the Earth in northern Sudan. Jenniskens et al. searched along the approach trajectory and luckily found 47 bits of a meteorite named Almahata Sitta. Analysis reveals it to be a porous achondrite and a polymict ureilite, and so the asteroid was F-class (dark carbon-rich anomalous ureilites). In the absence of a firm link between individual meteorites and their asteroidal parent bodies, asteroids are typically characterized only by their light reflection properties, and grouped accordingly into classes1,2,3. On 6 October 2008, a small asteroid was discovered with a flat reflectance spectrum in the 554–995 nm wavelength range, and designated 2008 TC3 (refs 4–6). It subsequently hit the Earth. Because it exploded at 37 km altitude, no macroscopic fragments were expected to survive. Here we report that a dedicated search along the approach trajectory recovered 47 meteorites, fragments of a single body named Almahata Sitta, with a total mass of 3.95 kg. Analysis of one of these meteorites shows it to be an achondrite, a polymict ureilite, anomalous in its class: ultra-fine-grained and porous, with large carbonaceous grains. The combined asteroid and meteorite reflectance spectra identify the asteroid as F class3, now firmly linked to dark carbon-rich anomalous ureilites, a material so fragile it was not previously represented in meteorite collections.

315 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present comprehensive results on continuous atmospheric cluster and particle measurements in the size range ∼1-42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) project.
Abstract: We present comprehensive results on continuous atmospheric cluster and particle measurements in the size range ∼1-42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) project. We focused on characterizing the spatial and temporal variation of new particle formation events and relevant particle formation parameters across Europe. Different types of air ion and cluster mobility spectrometers were deployed at 12 field sites across Europe from March 2008 to May 2009. The measurements were conducted in a wide variety of environments, including coastal and continental locations as well as sites at different altitudes (both in the boundary layer and the free troposphere). New particle formation events were detected at all of the 12 field sites during the year-long measurement period. From the data, nucleation and growth rates of newly formed particles were determined for each environment. In a case of parallel ion and neutral cluster measurements, we could also estimate the relative contribution of ion-induced and neutral nucleation to the total particle formation. The formation rates of charged particles at 2 nm accounted for 1-30% of the corresponding total particle formation rates. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. This work presents, so far, the most comprehensive effort to experimentally characterize nucleation and growth of atmospheric molecular clusters and nanoparticles at ground-based observation sites on a continental scale. © Author(s) 2010.

263 citations

Journal ArticleDOI
TL;DR: In this article, changes in baseline (here understood as representative of continental to hemispheric scales) tropospheric O3 concentrations that have occurred at northern midlatitudes over the past six decades are quantified from available measurement records with the goal of providing benchmarks to which retrospective model calculations of the global O3 distribution can be compared.
Abstract: . Changes in baseline (here understood as representative of continental to hemispheric scales) tropospheric O3 concentrations that have occurred at northern mid-latitudes over the past six decades are quantified from available measurement records with the goal of providing benchmarks to which retrospective model calculations of the global O3 distribution can be compared. Eleven data sets (ten ground-based and one airborne) including six European (beginning in the 1950's and before), three North American (beginning in 1984) and two Asian (beginning in 1991) are analyzed. When the full time periods of the data records are considered a consistent picture emerges; O3 has increased at all sites in all seasons at approximately 1% yr−1 relative to the site's 2000 yr mixing ratio in each season. For perspective, this rate of increase sustained from 1950 to 2000 corresponds to an approximate doubling. There is little if any evidence for statistically significant differences in average rates of increase among the sites, regardless of varying length of data records. At most sites (most definitively at the European sites) the rate of increase has slowed over the last decade (possibly longer), to the extent that at present O3 is decreasing at some sites in some seasons, particularly in summer. The average rate of increase before 2000 shows significant seasonal differences (1.08 ± 0.09, 0.89 ± 0.10, 0.85 ± 0.11 and 1.21 ± 0.12% yr−1 in spring, summer, autumn and winter, respectively, over North America and Europe).

257 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed 36 new particle formation events observed at four European measurement sites during EUCAARI campaigns in 2007-2009 and determined the related nucleation coefficients connecting the neutral nucleation rate J with the vapour concentrations in each mechanism.
Abstract: . Sulphuric acid and organic vapours have been identified as the key components in the ubiquitous secondary new particle formation in the atmosphere. In order to assess their relative contribution and spatial variability, we analysed altogether 36 new particle formation events observed at four European measurement sites during EUCAARI campaigns in 2007–2009. We tested models of several different nucleation mechanisms coupling the formation rate of neutral particles (J) with the concentration of sulphuric acid ([H2SO4]) or low-volatility organic vapours ([org]) condensing on sub-4 nm particles, or with a combination of both concentrations. Furthermore, we determined the related nucleation coefficients connecting the neutral nucleation rate J with the vapour concentrations in each mechanism. The main goal of the study was to identify the mechanism of new particle formation and subsequent growth that minimizes the difference between the modelled and measured nucleation rates. At three out of four measurement sites – Hyytiala (Finland), Melpitz (Germany) and San Pietro Capofiume (Italy) – the nucleation rate was closely connected to squared sulphuric acid concentration, whereas in Hohenpeissenberg (Germany) the low-volatility organic vapours were observed to be dominant. However, the nucleation rate at the sulphuric acid dominant sites could not be described with sulphuric acid concentration and a single value of the nucleation coefficient, as K in J=K [H2SO4]2, but the median coefficients for different sites varied over an order of magnitude. This inter-site variation was substantially smaller when the heteromolecular homogenous nucleation between H2SO4 and organic vapours was assumed to take place in addition to homogenous nucleation of H2SO4 alone, i.e., J=KSA1[H2SO4]2+KSA2[H2SO4][org]. By adding in this equation a term describing homomolecular organic vapour nucleation, Ks3[org]2, equally good results were achieved. In general, our results suggest that organic vapours do play a role, not only in the condensational growth of the particles, but also in the nucleation process, with a site-specific degree.

244 citations


Authors

Showing all 327 results

Network Information
Related Institutions (5)
Jet Propulsion Laboratory
14.3K papers, 548.1K citations

78% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

78% related

Ames Research Center
35.8K papers, 1.3M citations

75% related

California Institute of Technology
146.6K papers, 8.6M citations

75% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

75% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202114
202015
201911
20187
20178
20167