scispace - formally typeset
Search or ask a question
Institution

Michigan State University

EducationEast Lansing, Michigan, United States
About: Michigan State University is a education organization based out in East Lansing, Michigan, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 60109 authors who have published 137074 publications receiving 5633022 citations. The organization is also known as: MSU & Michigan State.


Papers
More filters
Journal ArticleDOI
TL;DR: A prototype biometrics system which integrates faces and fingerprints is developed which overcomes the limitations of face recognition systems as well as fingerprint verification systems and operates in the identification mode with an admissible response time.
Abstract: An automatic personal identification system based solely on fingerprints or faces is often not able to meet the system performance requirements. We have developed a prototype biometrics system which integrates faces and fingerprints. The system overcomes the limitations of face recognition systems as well as fingerprint verification systems. The integrated prototype system operates in the identification mode with an admissible response time. The identity established by the system is more reliable than the identity established by a face recognition system. In addition, the proposed decision fusion scheme enables performance improvement by integrating multiple cues with different confidence measures. Experimental results demonstrate that our system performs very well. It meets the response time as well as the accuracy requirements.

651 citations

Journal ArticleDOI
TL;DR: In this paper, the authors found that change in firm value during a crisis is a function of firm-level differences in corporate governance measures, and that firms with higher ownership concentration by unaffiliated foreign investors experienced a smaller reduction in their share value.

650 citations

Journal ArticleDOI
TL;DR: The effects of fatty acids on the genome provide new insight into how dietary fat might play a role in health and disease.
Abstract: Dietary fat is an important macronutrient for the growth and development of all organisms. In addition to its role as an energy source and its effects on membrane lipid composition, dietary fat has profound effects on gene expression, leading to changes in metabolism, growth, and cell differentiation. The effects of dietary fat on gene expression reflect an adaptive response to changes in the quantity and type of fat ingested. Specific fatty acid-regulated transcription factors have been identified in bacteria, amphibians, and mammals. In mammals, these factors include peroxisome proliferator-activated receptors (PPAR alpha, -beta, and -gamma), HNF4 alpha, NF kappa B, and SREBP1c. These factors are regulated by (a) direct binding of fatty acids, fatty acyl-coenzyme A, or oxidized fatty acids; (b) oxidized fatty acid (eicosanoid) regulation of G-protein-linked cell surface receptors and activation of signaling cascades targeting the nucleus; or (c) oxidized fatty acid regulation of intracellular calcium levels, which affect cell signaling cascades targeting the nucleus. At the cellular level, the physiological response to fatty acids will depend on (a) the quantity, chemistry, and duration of the fat ingested; (b) cell-specific fatty acid metabolism (oxidative pathways, kinetics, and competing reactions); (c) cellular abundance of specific nuclear and membrane receptors; and (d) involvement of specific transcription factors in gene expression. These mechanisms are involved in the control of carbohydrate and lipid metabolism, cell differentiation and growth, and cytokine, adhesion molecule, and eicosanoid production. The effects of fatty acids on the genome provide new insight into how dietary fat might play a role in health and disease.

649 citations

Journal ArticleDOI
TL;DR: In this paper, a theory developed to account for behavior in social dilemmas, where rational pursuit of self-interest can lead to collective disaster, was applied to the analysis of group motivation losses.
Abstract: Theory developed to account for behavior in social dilemmas—situations in which - the rational pursuit of self-interest can lead to collective disaster—was applied to the analysis of group motivation losses. Two group motivation loss effects demonstrated in previous research, the social-loafing effect and the free-rider effect, were shown to follow from social dilemma theories. An experiment was performed to empirically demonstrate a third motivation loss effect, termed the sucker effect. It was hypothesized that group members would reduce their efforts if they had a capable partner.who free rode on their efforts, that is, who was capable of contributing to the group but would not. This prediction was confirmed. The effect was particularly strong in males. Potential remedies for such motivation losses were discussed.

649 citations

Journal ArticleDOI
TL;DR: Examination of soil samples taken from the surface, vadose zone, and saturated subsurface using a small-subunit rRNA-based cloning approach found that spatial isolation could limit competition in surface soils, thereby supporting the high diversity and a uniform community structure.
Abstract: To begin defining the key determinants that drive microbial community structure in soil, we examined 29 soil samples from four geographically distinct locations taken from the surface, vadose zone, and saturated subsurface using a small-subunit rRNA-based cloning approach. While microbial communities in low-carbon, saturated, subsurface soils showed dominance, microbial communities in low-carbon surface soils showed remarkably uniform distributions, and all species were equally abundant. Two diversity indices, the reciprocal of Simpson's index (1/D) and the log series index, effectively distinguished between the dominant and uniform diversity patterns. For example, the uniform profiles characteristic of the surface communities had diversity index values that were 2 to 3 orders of magnitude greater than those for the high-dominance, saturated, subsurface communities. In a site richer in organic carbon, microbial communities consistently exhibited the uniform distribution pattern regardless of soil water content and depth. The uniform distribution implies that competition does not shape the structure of these microbial communities. Theoretical studies based on mathematical modeling suggested that spatial isolation could limit competition in surface soils, thereby supporting the high diversity and a uniform community structure. Carbon resource heterogeneity may explain the uniform diversity patterns observed in the high-carbon samples even in the saturated zone. Very high levels of chromium contamination (e.g., >20%) in the high-organic-matter soils did not greatly reduce the diversity. Understanding mechanisms that may control community structure, such as spatial isolation, has important implications for preservation of biodiversity, management of microbial communities for bioremediation, biocontrol of root diseases, and improved soil fertility.

649 citations


Authors

Showing all 60636 results

NameH-indexPapersCitations
David Miller2032573204840
Anil K. Jain1831016192151
D. M. Strom1763167194314
Feng Zhang1721278181865
Derek R. Lovley16858295315
Donald G. Truhlar1651518157965
Donald E. Ingber164610100682
J. E. Brau1621949157675
Murray F. Brennan16192597087
Peter B. Reich159790110377
Wei Li1581855124748
Timothy C. Beers156934102581
Claude Bouchard1531076115307
Mercouri G. Kanatzidis1521854113022
James J. Collins15166989476
Network Information
Related Institutions (5)
University of California, Davis
180K papers, 8M citations

97% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

97% related

University of Minnesota
257.9K papers, 11.9M citations

97% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

97% related

Cornell University
235.5K papers, 12.2M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023250
2022752
20217,041
20206,870
20196,548
20185,779