scispace - formally typeset
Search or ask a question
Institution

Michigan State University

EducationEast Lansing, Michigan, United States
About: Michigan State University is a education organization based out in East Lansing, Michigan, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 60109 authors who have published 137074 publications receiving 5633022 citations. The organization is also known as: MSU & Michigan State.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors make a comparison between pragmatic realism and scientific realism, and profile a few of their affinities as well as a few dramatic differences that divide them.
Abstract: Research" (1991) is informative for the overview it provides of scientific realism. At the outset House tells the reader that he will forgo comparisons between scientific realism and interpretivism, pragmatism, and critical theory in order to focus on "its [scientific realism's] introduction and explication" (p. 2). At the end he poses the question: "How does scientific realism compare with perspectives such as interpretivism, pragmatism, and critical theory?" (p. 9). A note of response is not the place to pursue such comparisons in detail, but a few comments, perhaps, may provide the basis for beginning such comparisons, in this case between pragmatism and scientific realism. Pragmatism and scientific realism share a number of assumptions about science, language, and the world. Both are also opposed to positivism/empiricism. Given their areas of agreement as well as some common opponents, it is surprising that these two schools of thought end up so far apart. The following comments profile a few of their affinities as well as a few dramatic differences that divide them.

628 citations

Journal ArticleDOI
Joseph Adams1, C. Adler2, Madan M. Aggarwal3, Zubayer Ahammed4  +364 moreInstitutions (39)
TL;DR: High statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at sqrt[s(NN)]=200 GeV report no evidence of p(T)-dependent suppression, which may be expected from models incorporating jet attenuation in cold nuclear matter or scattering of fragmentation hadrons.
Abstract: We report high statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at rootS(NN)=200 GeV. A large, approximately constant hadron suppression is observed in central Au+Au collisions for 5

628 citations

Journal ArticleDOI
TL;DR: A chimeric receptor approach is adopted to elucidate the role of Arabidopsis WAK1 and shows that transgenic plants overexpressing Wak1 are more resistant to Botrytis cinerea and are effective against fungal and bacterial pathogens.
Abstract: Oligogalacturonides (OGs) released from the plant cell wall are active both as damage-associated molecular patterns (DAMPs) for the activation of the plant immune response and regulators of plant growth and development. Members of the Wall-Associated Kinase (WAK) family are candidate receptors of OGs, due to their ability to bind in vitro these oligosaccharides. Because lethality and redundancy have hampered the study of WAKs by reverse genetics, we have adopted a chimeric receptor approach to elucidate the role of Arabidopsis WAK1. In a test-of-concept study, we first defined the appropriate chimera design and demonstrated that the Arabidopsis pattern recognition receptor (PRR) EFR is amenable to the construction of functional and resistance-conferring chimeric receptors carrying the ectodomain of another Arabidopsis PRR, FLS2. After, we analyzed chimeras derived from EFR and WAK1. Our results show that, upon stimulation with OGs, the WAK1 ectodomain is capable of activating the EFR kinase domain. On the other hand, upon stimulation with the cognate ligand elf18, the EFR ectodomain activates the WAK1 kinase, triggering defense responses that mirror those normally activated by OGs and are effective against fungal and bacterial pathogens. Finally, we show that transgenic plants overexpressing WAK1 are more resistant to Botrytis cinerea.

628 citations

Journal ArticleDOI
24 Jan 2013-Nature
TL;DR: The potential for marginal lands in ten Midwestern US states to produce sizeable amounts of biomass and concurrently mitigate greenhouse gas emissions is evaluated, finding that successional herbaceous vegetation, once well established, has a direct GHG emissions mitigation capacity that rivals that of purpose-grown crops.
Abstract: A comparative assessment of six alternative cropping systems over 20 years shows that, once well established, successional herbaceous vegetation grown on marginal lands has a direct greenhouse gas emissions mitigation capacity that rivals that of purpose-grown crops. Productive agricultural land that could otherwise be used to produce much-needed food crops is being diverted towards grain-based ethanol production in both Europe and the United States, partly in response to government legislation. An alternative is to grow cellulosic crops on so-called marginal lands. An evaluation of the potential of marginal lands in the Midwestern United States to produce biofuel while mitigating direct greenhouse gas emissions now finds that they have the capacity to produce a significant amount of biofuel energy without the initial carbon debt and indirect land-use costs associated with food-based biofuels. Legislation on biofuels production in the USA1 and Europe2,3 is directing food crops towards the production of grain-based ethanol2,3, which can have detrimental consequences for soil carbon sequestration4, nitrous oxide emissions5, nitrate pollution6, biodiversity7 and human health8. An alternative is to grow lignocellulosic (cellulosic) crops on ‘marginal’ lands9. Cellulosic feedstocks can have positive environmental outcomes10,11 and could make up a substantial proportion of future energy portfolios12,13. However, the availability of marginal lands for cellulosic feedstock production, and the resulting greenhouse gas (GHG) emissions, remains uncertain. Here we evaluate the potential for marginal lands in ten Midwestern US states to produce sizeable amounts of biomass and concurrently mitigate GHG emissions. In a comparative assessment of six alternative cropping systems over 20 years, we found that successional herbaceous vegetation, once well established, has a direct GHG emissions mitigation capacity that rivals that of purpose-grown crops (−851 ± 46 grams of CO2 equivalent emissions per square metre per year (gCO2e m−2 yr−1)). If fertilized, these communities have the capacity to produce about 63 ± 5 gigajoules of ethanol energy per hectare per year. By contrast, an adjacent, no-till corn–soybean–wheat rotation produces on average 41 ± 1 gigajoules of biofuel energy per hectare per year and has a net direct mitigation capacity of −397 ± 32 gCO2e m−2 yr−1; a continuous corn rotation would probably produce about 62 ± 7 gigajoules of biofuel energy per hectare per year, with 13% less mitigation. We also perform quantitative modelling of successional vegetation on marginal lands in the region at a resolution of 0.4 hectares, constrained by the requirement that each modelled location be within 80 kilometres of a potential biorefinery. Our results suggest that such vegetation could produce about 21 gigalitres of ethanol per year from around 11 million hectares, or approximately 25 per cent of the 2022 target for cellulosic biofuel mandated by the US Energy Independence and Security Act of 2007, with no initial carbon debt nor the indirect land-use costs associated with food-based biofuels. Other regional-scale aspects of biofuel sustainability2, such as water quality11,14 and biodiversity15, await future study.

628 citations

Journal ArticleDOI
TL;DR: The promises and challenges of these genome scan methods are reviewed, including correcting for the confounding influence of a species’ demographic history, biases caused by missing aspects of the genome, matching scales of environmental data with population structure, and other statistical considerations.
Abstract: Uncovering the genetic and evolutionary basis of local adaptation is a major focus of evolutionary biology. The recent development of cost-effective methods for obtaining high-quality genome-scale data makes it possible to identify some of the loci responsible for adaptive differences among populations. Two basic approaches for identifying putatively locally adaptive loci have been developed and are broadly used: one that identifies loci with unusually high genetic differentiation among populations (differentiation outlier methods) and one that searches for correlations between local population allele frequencies and local environments (genetic-environment association methods). Here, we review the promises and challenges of these genome scan methods, including correcting for the confounding influence of a species’ demographic history, biases caused by missing aspects of the genome, matching scales of environmental data with population structure, and other statistical considerations. In each case, ...

627 citations


Authors

Showing all 60636 results

NameH-indexPapersCitations
David Miller2032573204840
Anil K. Jain1831016192151
D. M. Strom1763167194314
Feng Zhang1721278181865
Derek R. Lovley16858295315
Donald G. Truhlar1651518157965
Donald E. Ingber164610100682
J. E. Brau1621949157675
Murray F. Brennan16192597087
Peter B. Reich159790110377
Wei Li1581855124748
Timothy C. Beers156934102581
Claude Bouchard1531076115307
Mercouri G. Kanatzidis1521854113022
James J. Collins15166989476
Network Information
Related Institutions (5)
University of California, Davis
180K papers, 8M citations

97% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

97% related

University of Minnesota
257.9K papers, 11.9M citations

97% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

97% related

Cornell University
235.5K papers, 12.2M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023250
2022752
20217,041
20206,870
20196,548
20185,779