scispace - formally typeset
Search or ask a question
Institution

Michigan State University

EducationEast Lansing, Michigan, United States
About: Michigan State University is a education organization based out in East Lansing, Michigan, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 60109 authors who have published 137074 publications receiving 5633022 citations. The organization is also known as: MSU & Michigan State.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper surveyed the empirical literature to determine how well six diversity hypotheses account for spatial patterns in species richness across varying scales of grain and extent, and found that climate and productivity play an important role in determining species richness at large scales, particularly for non-insular, terrestrial habitats.
Abstract: Aim We surveyed the empirical literature to determine how well six diversity hypotheses account for spatial patterns in species richness across varying scales of grain and extent. Location Worldwide. Methods We identified 393 analyses (‘cases') in 297 publications meeting our criteria. These criteria included the requirement that more than one diversity hypothesis was tested for its relationship with species richness. We grouped variables representing the hypotheses into the following ‘correlate types': climate/productivity, environmental heterogeneity, edaphics/nutrients, area, biotic interactions and dispersal/history (colonization limitation or other historical or evolutionary effect). For each case we determined the ‘primary' variable: the one most strongly correlated with taxon richness. We defined ‘primacy' as the proportion of cases in which each correlate type was represented by the primary variable, relative to the number of times it was studied. We tested for differences in both primacy and mean coefficient of determination of the primary variable between the hypotheses and between categories of five grouping variables: grain, extent, taxon (animal vs. plant), habitat medium (land vs. water) and insularity (insular vs. connected). Results Climate/productivity had the highest overall primacy, and environmental heterogeneity and dispersal/history had the lowest. Primacy of climate/productivity was much higher in large-grain and large-extent studies than at smaller scales. It was also higher on land than in water, and much higher in connected systems than in insular ones. For other hypotheses, differences were less pronounced. Throughout, studies on plants and animals showed similar patterns. Coefficients of determination of the primary variables differed little between hypotheses and across the grouping variables, the strongest effects being low means in the smallest grain class and for edaphics/nutrients variables, and a higher mean for water than for land in connected systems but vice versa in insular systems. We highlight areas of data deficiency. Main conclusions Our results support the notion that climate and productivity play an important role in determining species richness at large scales, particularly for non-insular, terrestrial habitats. At smaller extents and grain sizes, the primacy of the different types of correlates appears to differ little from null expectation. In our analysis, dispersal/history is rarely the best correlate of species richness, but this may reflect the difficulty of incorporating historical factors into regression models, and the collinearity between past and current climates. Our findings are consistent with the view that climate determines the capacity for species richness. However, its influence is less evident at smaller spatial scales, probably because (1) studies small in extent tend to sample little climatic range, and (2) at large grains some other influences on richness tend to vary mainly within the sampling unit.

593 citations

Journal ArticleDOI
TL;DR: For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.
Abstract: Urban areas generate considerably more stormwater runoff than natural areas of the same size due to a greater percentage of impervious surfaces that impede water infiltration. Roof surfaces account for a large portion of this impervious cover. Establishing vegetation on rooftops, known as green roofs, is one method of recovering lost green space that can aid in mitigating stormwater runoff. Two studies were performed using several roof platforms to quantify the effects of various treatments on stormwater retention. The first study used three different roof surface treatments to quantify differences in stormwater retention of a standard commercial roof with gravel ballast, an extensive green roof system without vegetation, and a typical extensive green roof with vegetation. Overall, mean percent rainfall retention ranged from 48.7% (gravel) to 82.8% (vegetated). The second study tested the influence of roof slope (2 and 6.5%) and green roof media depth (2.5, 4.0, and 6.0 cm) on stormwater retention. For all combined rain events, platforms at 2% slope with a 4-cm media depth had the greatest mean retention, 87%, although the difference from the other treatments was minimal. The combination of reduced slope and deeper media clearly reduced the total quantity of runoff. For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.

592 citations

Journal ArticleDOI
TL;DR: The authors find that perceived online dating success is predicted by four dimensions of self-disclosure (honesty, amount, intent, and valence), although honesty has a negative effect.
Abstract: This study investigates self-disclosure in the novel context of online dating relationships. Using a national random sample of Match.com members (N = 349), the authors tested a model of relational goals, self-disclosure, and perceived success in online dating. The authors’ findings provide support for social penetration theory and the social information processing and hyperpersonal perspectives as well as highlight the positive effect of anticipated future face-to-face interaction on online self-disclosure. The authors find that perceived online dating success is predicted by four dimensions of self-disclosure (honesty, amount, intent, and valence), although honesty has a negative effect. Furthermore, online dating experience is a strong predictor of perceived success in online dating. Additionally, the authors identify predictors of strategic success versus self-presentation success. This research extends existing theory on computer-mediated communication, self-disclosure, and relational success to the i...

592 citations

Journal ArticleDOI
TL;DR: The goal of this review is to summarize recent biochemical and molecular biological studies on prostanoid biosynthetic enzymes and on prostAnoid receptors and to address the major topics to be addressed.
Abstract: Prostanoids are local hormones formed from arachidonic acid that coordinate responses to circulating hormones which elicit prostanoid synthesis. For example, in the kidney, prostaglandin (PG) E2 synthesized by collecting tubule epithelia in response to arginine vasopressin (AVP) acts on the parent collecting tubule as well as the neighboring thick limb to modulate NaCl and water reabsorption occurring in response to AVP. Studies performed over the last 15 years have defined the major cellular and subcellular sites of PG synthesis in the kidney. In addition, it is now recognized that the multiple cellular actions of prostanoids in the kidney are mediated through receptors coupled to guanine nucleotide regulatory proteins. The goal of this review is to summarize recent biochemical and molecular biological studies on prostanoid biosynthetic enzymes and on prostanoid receptors. The major topics to be addressed are 1) phospholipid precursors of arachidonate, 2) membrane-associated and cytosolic phospholipase A2s, 3) PG endoperoxide (PGH) synthase isozymes, 4) thromboxane A (TxA) synthase, and 5) TxA/PGH and PGE receptors.

592 citations

Journal ArticleDOI
TL;DR: It is argued that natural selection is a ubiquitous part of speciation, and given the many ways in which stochastic and deterministic factors may interact during divergence, it is questioned whether the ecological speciation concept is useful.
Abstract: Since Darwin published the “Origin,” great progress has been made in our understanding of speciation mechanisms. The early investigations by Mayr and Dobzhansky linked Darwin’s view of speciation by adaptive divergence to the evolution of reproductive isolation, and thus provided a framework for studying the origin of species. However, major controversies and questions remain, including: When is speciation nonecological? Under what conditions does geographic isolation constitute a reproductive isolating barrier? and How do we estimate the “importance” of different isolating barriers? Here, we address these questions, providing historical background and offering some new perspectives. A topic of great recent interest is the role of ecology in speciation. “Ecological speciation” is defined as the case in which divergent selection leads to reproductive isolation, with speciation under uniform selection, polyploid speciation, and speciation by genetic drift defined as “nonecological.” We review these proposed cases of nonecological speciation and conclude that speciation by uniform selection and polyploidy normally involve ecological processes. Furthermore, because selection can impart reproductive isolation both directly through traits under selection and indirectly through pleiotropy and linkage, it is much more effective in producing isolation than genetic drift. We thus argue that natural selection is a ubiquitous part of speciation, and given the many ways in which stochastic and deterministic factors may interact during divergence, we question whether the ecological speciation concept is useful. We also suggest that geographic isolation caused by adaptation to different habitats plays a major, and largely neglected, role in speciation. We thus provide a framework for incorporating geographic isolation into the biological species concept (BSC) by separating ecological from historical processes that govern species distributions, allowing for an estimate of geographic isolation based upon genetic differences between taxa. Finally, we suggest that the individual and relative contributions of all potential barriers be estimated for species pairs that have recently achieved species status under the criteria of the BSC. Only in this way will it be possible to distinguish those barriers that have actually contributed to speciation from those that have accumulated after speciation is complete. We conclude that ecological adaptation is the major driver of reproductive isolation, and that the term “biology of speciation,” as proposed by Mayr, remains an accurate and useful characterization of the diversity of speciation mechanisms.

592 citations


Authors

Showing all 60636 results

NameH-indexPapersCitations
David Miller2032573204840
Anil K. Jain1831016192151
D. M. Strom1763167194314
Feng Zhang1721278181865
Derek R. Lovley16858295315
Donald G. Truhlar1651518157965
Donald E. Ingber164610100682
J. E. Brau1621949157675
Murray F. Brennan16192597087
Peter B. Reich159790110377
Wei Li1581855124748
Timothy C. Beers156934102581
Claude Bouchard1531076115307
Mercouri G. Kanatzidis1521854113022
James J. Collins15166989476
Network Information
Related Institutions (5)
University of California, Davis
180K papers, 8M citations

97% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

97% related

University of Minnesota
257.9K papers, 11.9M citations

97% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

97% related

Cornell University
235.5K papers, 12.2M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023250
2022752
20217,041
20206,870
20196,548
20185,779