scispace - formally typeset
Search or ask a question
Institution

Michigan State University

EducationEast Lansing, Michigan, United States
About: Michigan State University is a education organization based out in East Lansing, Michigan, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 60109 authors who have published 137074 publications receiving 5633022 citations. The organization is also known as: MSU & Michigan State.


Papers
More filters
Journal ArticleDOI
TL;DR: The genesis of these tasks is reviewed and how and why they came to be so influential, the reliability and validity of the tasks are addressed, and more technical aspects are considered, such as optimal administration and scoring procedures.
Abstract: Working memory (WM) span tasks—and in particular, counting span, operation span, and reading span tasks—are widely used measures of WM capacity. Despite their popularity, however, there has never been a comprehensive analysis of the merits of WM span tasks as measurement tools. Here, we review the genesis of these tasks and discuss how and why they came to be so influential. In so doing, we address the reliability and validity of the tasks, and we consider more technical aspects of the tasks, such as optimal administration and scoring procedures. Finally, we discuss statistical and methodological techniques that have commonly been used in conjunction with WM span tasks, such as latent variable analysis and extreme-groups designs.

2,411 citations

Journal ArticleDOI
TL;DR: An overview of polymer-clay hybrid nanocomposites is provided with emphasis placed on the use of alkylammonium exchanged smectite clays as the reinforcement phase in selected polymer matrices as discussed by the authors.

2,403 citations

Journal ArticleDOI
TL;DR: Computer-simulated analysis of terminal restriction fragment length polymorphisms (T-RFLP) for 1,002 eubacterial sequences showed that with proper selection of PCR primers and restriction enzymes, 686 sequences could be PCR amplified and classified into 233 unique terminal restriction fragments lengths or "ribotypes."
Abstract: A quantitative molecular technique was developed for rapid analysis of microbial community diversity in various environments. The technique employed PCR in which one of the two primers used was fluorescently labeled at the 5' end and was used to amplify a selected region of bacterial genes encoding 16S rRNA from total community DNA. The PCR product was digested with restriction enzymes, and the fluorescently labeled terminal restriction fragment was precisely measured by using an automated DNA sequencer. Computer-simulated analysis of terminal restriction fragment length polymorphisms (T-RFLP) for 1,002 eubacterial sequences showed that with proper selection of PCR primers and restriction enzymes, 686 sequences could be PCR amplified and classified into 233 unique terminal restriction fragment lengths or "ribotypes." Using T-RFLP, we were able to distinguish all bacterial strains in a model bacterial community, and the pattern was consistent with the predicted outcome. Analysis of complex bacterial communities with T-RFLP revealed high species diversity in activated sludge, bioreactor sludge, aquifer sand, and termite guts; as many as 72 unique ribotypes were found in these communities, with 36 ribotypes observed in the termite guts. The community T-RFLP patterns were numerically analyzed and hierarchically clustered. The pattern derived from termite guts was found to be distinctly different from the patterns derived from the other three communities. Overall, our results demonstrated that T-RFLP is a powerful tool for assessing the diversity of complex bacterial communities and for rapidly comparing the community structure and diversity of different ecosystems.

2,383 citations

Journal ArticleDOI
TL;DR: A texture segmentation algorithm inspired by the multi-channel filtering theory for visual information processing in the early stages of human visual system is presented, which is based on reconstruction of the input image from the filtered images.

2,351 citations

Journal ArticleDOI
TL;DR: In this article, the authors extract new parton distribution functions (PDFs) of the proton by global analysis of hard scattering data in the general-mass framework of perturbative quantum chromodynamics.
Abstract: We extract new parton distribution functions (PDFs) of the proton by global analysis of hard scattering data in the general-mass framework of perturbative quantum chromodynamics Our analysis includes new theoretical developments together with the most recent collider data from deep-inelastic scattering, vector boson production, and single-inclusive jet production Because of the difficulty in fitting both the D0 Run-II W lepton asymmetry data and some fixed-target DIS data, we present two families of PDFs, CT10 and CT10W, without and with these high-luminosity W lepton asymmetry data included in the global analysis With both sets of PDFs, we study theoretical predictions and uncertainties for a diverse selection of processes at the Fermilab Tevatron and the CERN Large Hadron Collider

2,349 citations


Authors

Showing all 60636 results

NameH-indexPapersCitations
David Miller2032573204840
Anil K. Jain1831016192151
D. M. Strom1763167194314
Feng Zhang1721278181865
Derek R. Lovley16858295315
Donald G. Truhlar1651518157965
Donald E. Ingber164610100682
J. E. Brau1621949157675
Murray F. Brennan16192597087
Peter B. Reich159790110377
Wei Li1581855124748
Timothy C. Beers156934102581
Claude Bouchard1531076115307
Mercouri G. Kanatzidis1521854113022
James J. Collins15166989476
Network Information
Related Institutions (5)
University of California, Davis
180K papers, 8M citations

97% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

97% related

University of Minnesota
257.9K papers, 11.9M citations

97% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

97% related

Cornell University
235.5K papers, 12.2M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023250
2022752
20217,041
20206,870
20196,548
20185,779