scispace - formally typeset
Search or ask a question
Institution

Michigan State University

EducationEast Lansing, Michigan, United States
About: Michigan State University is a education organization based out in East Lansing, Michigan, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 60109 authors who have published 137074 publications receiving 5633022 citations. The organization is also known as: MSU & Michigan State.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a meta-analysis of the cumulative research on various predictors of job performance shows that for entry-level jobs there is no predictor with validity equal to that of ability, which has a mean validity of.53.
Abstract: Meta-analysis of the cumulative research on various predictors of job performance shows that for entry-level jobs there is no predictor with validity equal to that of ability, which has a mean validity of .53. For selection on the basis of current job performance, the work sample test, with mean validity of .54, is slightly better. For federal entry-level jobs, substitution of an alternative predictor would cost from $3.12 billion (job tryout) to $15.89 billion per year (age). Hiring on ability has a utility of $15.61 billion per year, but affects minority groups adversely. Hiring on ability by quotas would decrease this utility by 5%. A third strategy—using a low cutoff score—would decrease utility by 83%. Using other predictors in conjunction with ability tests might improve validity and reduce adverse impact, but there is as yet no data base for studying this possibility.

2,099 citations

Journal ArticleDOI
TL;DR: A face detection algorithm for color images in the presence of varying lighting conditions as well as complex backgrounds is proposedBased on a novel lighting compensation technique and a nonlinear color transformation, this method detects skin regions over the entire image and generates face candidates based on the spatial arrangement of these skin patches.
Abstract: Human face detection plays an important role in applications such as video surveillance, human computer interface, face recognition, and face image database management. We propose a face detection algorithm for color images in the presence of varying lighting conditions as well as complex backgrounds. Based on a novel lighting compensation technique and a nonlinear color transformation, our method detects skin regions over the entire image and then generates face candidates based on the spatial arrangement of these skin patches. The algorithm constructs eye, mouth, and boundary maps for verifying each face candidate. Experimental results demonstrate successful face detection over a wide range of facial variations in color, position, scale, orientation, 3D pose, and expression in images from several photo collections (both indoors and outdoors).

2,075 citations

Journal ArticleDOI
TL;DR: There is a solid foundation for concluding that there is an emerging science of team effectiveness and that findings from this research foundation provide several means to improve team effectiveness.
Abstract: Teams of people working together for a common purpose have been a centerpiece of human social organization ever since our ancient ancestors first banded together to hunt game, raise families, and defend their communities. Human history is largely a story of people working together in groups to explore, achieve, and conquer. Yet, the modern concept of work in large organizations that developed in the late 19th and early 20th centuries is largely a tale of work as a collection of individual jobs. A variety of global forces unfolding over the last two decades, however, has pushed organizations worldwide to restructure work around teams, to enable more rapid, flexible, and adaptive responses to the unexpected. This shift in the structure of work has made team effectiveness a salient organizational concern.Teams touch our lives everyday and their effectiveness is important to well-being across a wide range of societal functions. There is over 50 years of psychological research—literally thousands of studies—fo...

2,069 citations

Journal ArticleDOI
01 Dec 2003-Ecology
TL;DR: In this paper, the authors examine the relationship between climate and biodiversity and conclude that the interaction between water and energy, either directly or indirectly, provides a strong explanation for globally extensive plant and animal diversity gradients, but for animals there also is a latitudinal shift in the relative importance of ambient energy vs. water moving from the poles to the equator.
Abstract: It is often claimed that we do not understand the forces driving the global diversity gradient. However, an extensive literature suggests that contemporary climate constrains terrestrial taxonomic richness over broad geographic extents. Here, we review the empirical literature to examine the nature and form of the relationship between climate and richness. Our goals were to document the support for the climatically based energy hypothesis, and within the constraints imposed by correlative analyses, to evaluate two versions of the hypothesis: the productivity and ambient energy hypotheses. Focusing on studies extending over 800 km, we found that measures of energy, water, or water-energy balance explain spatial variation in richness better than other climatic and non-climatic variables in 82 of 85 cases. Even when considered individually and in isolation, water/ energy variables explain on average over 60% of the variation in the richness of a wide range of plant and animal groups. Further, water variables usually represent the strongest predictors in the tropics, subtropics, and warm temperate zones, whereas energy variables (for animals) or water-energy variables (for plants) dominate in high latitudes. We conclude that the interaction between water and energy, either directly or indirectly (via plant productivity), provides a strong explanation for globally extensive plant and animal diversity gradients, but for animals there also is a latitudinal shift in the relative importance of ambient energy vs. water moving from the poles to the equator. Although contemporary climate is not the only factor influencing species richness and may not explain the diversity pattern for all taxonomic groups, it is clear that understanding water-energy dynamics is critical to future biodiversity research. Analyses that do not include water-energy variables are missing a key component for explaining broad-scale patterns of diversity.

2,069 citations

Journal ArticleDOI
09 Aug 2007-Nature
TL;DR: The results suggest a model in which jasmonate ligands promote the binding of the SCFCOI1 ubiquitin ligase to and subsequent degradation of the JAZ1 repressor protein, and implicate theSCFCOi1–JAZ1 protein complex as a site of perception of the plant hormone JA–Ile.
Abstract: Jasmonate and related signalling compounds have a crucial role in both host immunity and development in plants, but the molecular details of the signalling mechanism are poorly understood. Here we identify members of the jasmonate ZIM-domain (JAZ) protein family as key regulators of jasmonate signalling. JAZ1 protein acts to repress transcription of jasmonate-responsive genes. Jasmonate treatment causes JAZ1 degradation and this degradation is dependent on activities of the SCF(COI1) ubiquitin ligase and the 26S proteasome. Furthermore, the jasmonoyl-isoleucine (JA-Ile) conjugate, but not other jasmonate-derivatives such as jasmonate, 12-oxo-phytodienoic acid, or methyl-jasmonate, promotes physical interaction between COI1 and JAZ1 proteins in the absence of other plant proteins. Our results suggest a model in which jasmonate ligands promote the binding of the SCF(COI1) ubiquitin ligase to and subsequent degradation of the JAZ1 repressor protein, and implicate the SCF(COI1)-JAZ1 protein complex as a site of perception of the plant hormone JA-Ile.

2,061 citations


Authors

Showing all 60636 results

NameH-indexPapersCitations
David Miller2032573204840
Anil K. Jain1831016192151
D. M. Strom1763167194314
Feng Zhang1721278181865
Derek R. Lovley16858295315
Donald G. Truhlar1651518157965
Donald E. Ingber164610100682
J. E. Brau1621949157675
Murray F. Brennan16192597087
Peter B. Reich159790110377
Wei Li1581855124748
Timothy C. Beers156934102581
Claude Bouchard1531076115307
Mercouri G. Kanatzidis1521854113022
James J. Collins15166989476
Network Information
Related Institutions (5)
University of California, Davis
180K papers, 8M citations

97% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

97% related

University of Minnesota
257.9K papers, 11.9M citations

97% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

97% related

Cornell University
235.5K papers, 12.2M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023250
2022752
20217,041
20206,870
20196,548
20185,779