scispace - formally typeset
Search or ask a question
Institution

Michigan State University

EducationEast Lansing, Michigan, United States
About: Michigan State University is a education organization based out in East Lansing, Michigan, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 60109 authors who have published 137074 publications receiving 5633022 citations. The organization is also known as: MSU & Michigan State.


Papers
More filters
Journal ArticleDOI
21 Feb 2003-Cell
TL;DR: A review of promising mechanisms proposed for mitochondrial involvement in cell death are examined, including oxidative phosphorylation, generation of oxygen radicals, dynamic morphological rearrangements, calcium overload, and permeability transition.

1,252 citations

Journal ArticleDOI
TL;DR: This paper extends NSGA-III to solve generic constrained many-objective optimization problems and suggests three types of constrained test problems that are scalable to any number of objectives and provide different types of challenges to a many- objective optimizer.
Abstract: In the precursor paper, a many-objective optimization method (NSGA-III), based on the NSGA-II framework, was suggested and applied to a number of unconstrained test and practical problems with box constraints alone. In this paper, we extend NSGA-III to solve generic constrained many-objective optimization problems. In the process, we also suggest three types of constrained test problems that are scalable to any number of objectives and provide different types of challenges to a many-objective optimizer. A previously suggested MOEA/D algorithm is also extended to solve constrained problems. Results using constrained NSGA-III and constrained MOEA/D show an edge of the former, particularly in solving problems with a large number of objectives. Furthermore, the NSGA-III algorithm is made adaptive in updating and including new reference points on the fly. The resulting adaptive NSGA-III is shown to provide a denser representation of the Pareto-optimal front, compared to the original NSGA-III with an identical computational effort. This, and the original NSGA-III paper, together suggest and amply test a viable evolutionary many-objective optimization algorithm for handling constrained and unconstrained problems. These studies should encourage researchers to use and pay further attention in evolutionary many-objective optimization.

1,247 citations

Journal ArticleDOI
01 Sep 1999-Ecology
TL;DR: Testing for biome differences in the slope and intercept of interspecific relationships among leaf traits for more than 100 species in six distinct biomes of the Americas suggests a predictable set of scaling relationships among key leaf morphological, chemical, and metabolic traits that are replicated globally among terrestrial ecosystems regardless of biome or vegetation type.
Abstract: Convergence in interspecific leaf trait relationships across diverse taxonomic groups and biomes would have important evolutionary and ecological implications. Such convergence has been hypothesized to result from trade-offs that limit the combination of plant traits for any species. Here we address this issue by testing for biome differences in the slope and intercept of interspecific relationships among leaf traits: longevity, net pho- tosynthetic capacity (Amax), leaf diffusive conductance (Gs), specific leaf area (SLA), and nitrogen (N) status, for more than 100 species in six distinct biomes of the Americas. The six biomes were: alpine tundra-subalpine forest ecotone, cold temperate forest-prairie ecotone, montane cool temperate forest, desert shrubland, subtropical forest, and tropical rain forest. Despite large differences in climate and evolutionary history, in all biomes mass-based leaf N (Nmass), SLA, Gs, and Amax were positively related to one another and decreased with increasing leaf life span. The relationships between pairs of leaf traits exhibited similar slopes among biomes, suggesting a predictable set of scaling relationships among key leaf morphological, chemical, and metabolic traits that are replicated globally among terrestrial ecosystems regardless of biome or vegetation type. However, the intercept (i.e., the overall elevation of regression lines) of relationships between pairs of leaf traits usually differed among biomes. With increasing aridity across sites, species had greater Amax for a given level of Gs and lower SLA for any given leaf life span. Using principal components analysis, most variation among species was explained by an axis related to mass-based leaf traits (Amax, N, and SLA) while a second axis reflected climate, Gs, and other area-based leaf traits.

1,244 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive empirical examination of LMX antecedents and consequences has been conducted, which included 247 studies, containing 290 samples, and 21 antecedent and 16 consequences of leader-member exchange quality.

1,243 citations

Journal ArticleDOI
04 Mar 2016
TL;DR: The reactive force field (ReaxFF) interatomic potential is a powerful computational tool for exploring, developing and optimizing material properties as mentioned in this paper, but it is often too computationally intense for simulations that consider the full dynamic evolution of a system.
Abstract: The reactive force-field (ReaxFF) interatomic potential is a powerful computational tool for exploring, developing and optimizing material properties. Methods based on the principles of quantum mechanics (QM), while offering valuable theoretical guidance at the electronic level, are often too computationally intense for simulations that consider the full dynamic evolution of a system. Alternatively, empirical interatomic potentials that are based on classical principles require significantly fewer computational resources, which enables simulations to better describe dynamic processes over longer timeframes and on larger scales. Such methods, however, typically require a predefined connectivity between atoms, precluding simulations that involve reactive events. The ReaxFF method was developed to help bridge this gap. Approaching the gap from the classical side, ReaxFF casts the empirical interatomic potential within a bond-order formalism, thus implicitly describing chemical bonding without expensive QM calculations. This article provides an overview of the development, application, and future directions of the ReaxFF method.

1,239 citations


Authors

Showing all 60636 results

NameH-indexPapersCitations
David Miller2032573204840
Anil K. Jain1831016192151
D. M. Strom1763167194314
Feng Zhang1721278181865
Derek R. Lovley16858295315
Donald G. Truhlar1651518157965
Donald E. Ingber164610100682
J. E. Brau1621949157675
Murray F. Brennan16192597087
Peter B. Reich159790110377
Wei Li1581855124748
Timothy C. Beers156934102581
Claude Bouchard1531076115307
Mercouri G. Kanatzidis1521854113022
James J. Collins15166989476
Network Information
Related Institutions (5)
University of California, Davis
180K papers, 8M citations

97% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

97% related

University of Minnesota
257.9K papers, 11.9M citations

97% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

97% related

Cornell University
235.5K papers, 12.2M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023250
2022752
20217,041
20206,870
20196,548
20185,779