scispace - formally typeset
Search or ask a question
Institution

Michigan Technological University

EducationHoughton, Michigan, United States
About: Michigan Technological University is a education organization based out in Houghton, Michigan, United States. It is known for research contribution in the topics: Population & Volcano. The organization has 8023 authors who have published 17422 publications receiving 481780 citations. The organization is also known as: MTU & Michigan Tech.


Papers
More filters
Journal ArticleDOI
TL;DR: This brief derives estimations for the upper and lower bounds of the optimal equivalent factor of the equivalent consumption minimization strategy (ECMS) using the HEV configuration and independent of the drivecycle, verified by simulation results.
Abstract: The strategy for energy management (EM) of a hybrid electric vehicle (HEV) has a considerable impact on the vehicle fuel economy. One well-known EM strategy is the equivalent consumption minimization strategy (ECMS) that is a form of Pontryagin’s minimum principle (PMP). PMP proves under certain conditions that ECMS yields the maximum fuel economy. However, even if the required conditions are met, the optimal value of the costate still has to be estimated. Many approaches have been suggested for estimating the optimal value of the costate, or the equivalent factor for using battery power in the ECMS cost function. Instead of direct estimation of ECMS optimal equivalent factor, this brief derives estimations for the upper and lower bounds of the optimal equivalent factor. The derived bounds are functions of the HEV configuration and independent of the drivecycle, verified by simulation results. The knowledge about these bounds can be employed in designing new types of adaptive ECMSs (A-ECMSs). To demonstrate the application of the bounds, this brief introduces a new A-ECMS. Finally, the simulation results are presented comparing the fuel economy of the introduced A-ECMS with the fuel economies of an existing A-ECMS and global optimal controller.

118 citations

Journal ArticleDOI
TL;DR: The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplets size distribution due to reduced supersaturation fluctuations.
Abstract: The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics ([Formula: see text]) for high aerosol concentration, and slow microphysics ([Formula: see text]) for low aerosol concentration; here, [Formula: see text] is the phase-relaxation time and [Formula: see text] is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as [Formula: see text], and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation.

118 citations

Journal ArticleDOI
TL;DR: Different types of uncertainty contained within the data, namely intra- and inter-source uncertainty, are identified and modeled using the different degrees of freedom of type-2 FSs, thus providing a clear representation and separation of these individual type of uncertainty present in the data.
Abstract: In this paper, a new approach is presented to model interval-based data using fuzzy sets (FSs). Specifically, we show how both crisp and uncertain intervals (where there is uncertainty about the endpoints of intervals) collected from individual or multiple survey participants over single or repeated surveys can be modeled using type-1, interval type-2, or general type-2 FSs based on zSlices. The proposed approach is designed to minimize any loss of information when transferring the interval-based data into FS models, and to avoid, as much as possible, assumptions about the distribution of the data. Furthermore, our approach does not rely on data preprocessing or outlier removal, which can lead to the elimination of important information. Different types of uncertainty contained within the data, namely intra- and inter-source uncertainty, are identified and modeled using the different degrees of freedom of type-2 FSs, thus providing a clear representation and separation of these individual types of uncertainty present in the data. We provide full details of the proposed approach, as well as a series of detailed examples based on both real-world and synthetic data. We perform comparisons with analogue techniques to derive FSs from intervals, namely the interval approach and the enhanced interval approach, and highlight the practical applicability of the proposed approach.

117 citations

Journal ArticleDOI
TL;DR: The results of this study show that for aspen and balsam, high dilute acid hydrolysis xylose yields were obtainable at all acid concentrations and temperatures studied as long as reaction time was optimized.

117 citations

Journal ArticleDOI
TL;DR: The results can be a guide for future studies and control of the sulfur species and meanwhile a baseline for approaching the theoretical capacity of the Li-S battery.
Abstract: Understanding and controlling the sulfur reduction species (Li2Sx, 1 ≤ x ≤ 8) under realistic battery conditions are essential for the development of advanced practical Li–S cells that can reach their full theoretical capacity. However, it has been a great challenge to probe the sulfur reduction intermediates and products because of the lack of methods. This work employed various ex situ and in situ methods to study the mechanism of the Li–S redox reactions and the properties of Li2Sx and Li2S. Synchrotron high-energy X-ray diffraction analysis used to characterize dry powder deposits from lithium polysulfide solution suggests that the new crystallite phase may be lithium polysulfides. The formation of Li2S crystallites with a polyhedral structure was observed in cells with both the conventional (LiTFSI) electrolyte and polysulfide-based electrolyte. In addition, an in situ transmission electron microscopy experiment observed that the lithium diffusion to sulfur during discharge preferentially occurred at...

117 citations


Authors

Showing all 8104 results

NameH-indexPapersCitations
Anil K. Jain1831016192151
Marc W. Kirschner162457102145
Yonggang Huang13679769290
Hong Wang110163351811
Fei Wang107182453587
Emanuele Bonamente10521940826
Haoshen Zhou10451937609
Nicholas J. Turro104113153827
Yang Shao-Horn10245849463
Richard P. Novick9929534542
Markus J. Buehler9560933054
Martin L. Yarmush9170234591
Alan Robock9034627022
Patrick M. Schlievert9044432037
Lonnie O. Ingram8831622217
Network Information
Related Institutions (5)
Texas A&M University
164.3K papers, 5.7M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Arizona State University
109.6K papers, 4.4M citations

93% related

Pennsylvania State University
196.8K papers, 8.3M citations

93% related

Purdue University
163.5K papers, 5.7M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202349
2022154
2021882
2020891
2019892
2018893