scispace - formally typeset
Search or ask a question
Institution

Mines ParisTech

EducationParis, France
About: Mines ParisTech is a education organization based out in Paris, France. It is known for research contribution in the topics: Finite element method & Microstructure. The organization has 6564 authors who have published 11676 publications receiving 359898 citations. The organization is also known as: École nationale supérieure des mines de Paris & École des mines de Paris.


Papers
More filters
Journal ArticleDOI
TL;DR: This article proposes a multi-agent behavioral model based on the opportunistic individual behaviors that describe the norm violation and the anticipatory individual abilities of simulated drivers that allow critical situations to be detected that has been validated for different traffic scenarios.

155 citations

Journal ArticleDOI
TL;DR: A novel representation of protein sequences that involves local compositions of amino acids and twin amino acids, and local frequencies of distance between successive (basic, hydrophobic, and other) amino acids is proposed.
Abstract: As the number of complete genomes rapidly increases, accurate methods to automatically predict the subcellular location of proteins are increasingly useful to help their functional annotation. In order to improve the predictive accuracy of the many prediction methods developed to date, a novel representation of protein sequences is proposed. This representation involves local compositions of amino acids and twin amino acids, and local frequencies of distance between successive (basic, hydrophobic, and other) amino acids. For calculating the local features, each sequence is split into three parts: N-terminal, middle, and C-terminal. The N-terminal part is further divided into four regions to consider ambiguity in the length and position of signal sequences. We tested this representation with support vector machines on two data sets extracted from the SWISS-PROT database. Through fivefold cross-validation tests, overall accuracies of more than 87% and 91% were obtained for eukaryotic and prokaryotic proteins, respectively. It is concluded that considering the respective features in the N-terminal, middle, and C-terminal parts is helpful to predict the subcellular location.

155 citations

Journal ArticleDOI
TL;DR: These findings establish cooperation between a dominant oncogene and a susceptibility variant that regulates a major driver of Ewing sarcomagenesis.
Abstract: Deciphering the ways in which somatic mutations and germline susceptibility variants cooperate to promote cancer is challenging. Ewing sarcoma is characterized by fusions between EWSR1 and members of the ETS gene family, usually EWSR1-FLI1, leading to the generation of oncogenic transcription factors that bind DNA at GGAA motifs. A recent genome-wide association study identified susceptibility variants near EGR2. Here we found that EGR2 knockdown inhibited proliferation, clonogenicity and spheroidal growth in vitro and induced regression of Ewing sarcoma xenografts. Targeted germline deep sequencing of the EGR2 locus in affected subjects and controls identified 291 Ewing-associated SNPs. At rs79965208, the A risk allele connected adjacent GGAA repeats by converting an interspaced GGAT motif into a GGAA motif, thereby increasing the number of consecutive GGAA motifs and thus the EWSR1-FLI1-dependent enhancer activity of this sequence, with epigenetic characteristics of an active regulatory element. EWSR1-FLI1 preferentially bound to the A risk allele, which increased global and allele-specific EGR2 expression. Collectively, our findings establish cooperation between a dominant oncogene and a susceptibility variant that regulates a major driver of Ewing sarcomagenesis.

155 citations

Book
01 May 2001
TL;DR: In this article, the authors introduce the finite element method for large deformation and classify finite element formulations, including contact, friction, incompressibility, and auxiliary equations, such as contact and friction.
Abstract: 1. Mathematical background 2. Introduction to the finite element method 3. Finite elements for large deformation 4. Typical finite elements 5. Classification of finite element formulations 6. Auxiliary equations: contact, friction, incompressibility 7. Thermo-mechanical principles 8. Sheet metal formability tests 9. Steady state forming problems 10. Forging analysis 11. Sheet forming analysis 12. Recent research topics.

155 citations

Journal ArticleDOI
TL;DR: A mathematical model which can solve small instances to optimality, and also serves as a problem representation is presented, and a tabu search algorithm with specific neighborhood functions and a diversification structure is developed.

155 citations


Authors

Showing all 6591 results

NameH-indexPapersCitations
Francis Bach11048454944
Olivier Delattre10349039258
Richard M. Murray9771169016
Bruno Latour9636494864
George G. Malliaras9438228533
George S. Wilson8871633034
Zhong-Ping Jiang8159724279
F. Liu8042823869
Kazu Suenaga7532926287
Carlo Adamo7544436092
Edith Heard7519623899
Enrico Zio73112723809
John J. Jonas7037921544
Bernard Asselain6940923648
Eric Guibal6929416397
Network Information
Related Institutions (5)
Delft University of Technology
94.4K papers, 2.7M citations

93% related

Royal Institute of Technology
68.4K papers, 1.9M citations

93% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

92% related

Chalmers University of Technology
53.9K papers, 1.5M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202315
202264
2021274
2020260
2019250
2018249