scispace - formally typeset
Search or ask a question
Institution

Missouri University of Science and Technology

EducationRolla, Missouri, United States
About: Missouri University of Science and Technology is a education organization based out in Rolla, Missouri, United States. It is known for research contribution in the topics: Control theory & Artificial neural network. The organization has 9380 authors who have published 21161 publications receiving 462544 citations. The organization is also known as: Missouri S&T & University of Missouri–Rolla.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of grain refinement and heat treatment on corrosion behavior of a friction stir processed Mg-Y-RE alloy was studied and the ennoblement of pitting potential by ∼250mV vs SCE of processed samples as compared to parent alloy was attributed to grain refinement.

135 citations

Journal ArticleDOI
TL;DR: In this article, the authors report on the North American state-of-the-art in the use of FRP composites in concrete structures, including parking garages, multi-purpose convention centers, office buildings and silos.

135 citations

Journal ArticleDOI
TL;DR: In this paper, a Rapid Single Particle ICP-MS (SP-ICP-MS) method was developed to characterize and quantify titanium-containing, titanium dioxide, silver, and gold nanoparticles in surface water and treated drinking water.

135 citations

Journal ArticleDOI
TL;DR: A new metal-organic framework, Fe-BTTri, is found to be highly selective in the adsorption of CO over a variety of other gas molecules, making it extremely effective, for example, in the removal of trace CO from mixtures with H2, N2, and CH4.
Abstract: A new metal–organic framework, Fe-BTTri (Fe3[(Fe4Cl)3(BTTri)8]2·18CH3OH, H3BTTri =1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene)), is found to be highly selective in the adsorption of CO over a variety of other gas molecules, making it extremely effective, for example, in the removal of trace CO from mixtures with H2, N2, and CH4. This framework not only displays significant CO adsorption capacity at very low pressures (1.45 mmol/g at just 100 μbar), but, importantly, also exhibits readily reversible CO binding. Fe-BTTri utilizes a unique spin state change mechanism to bind CO in which the coordinatively unsaturated, high-spin FeII centers of the framework convert to octahedral, low-spin FeII centers upon CO coordination. Desorption of CO converts the FeII sites back to a high-spin ground state, enabling the facile regeneration and recyclability of the material. This spin state change is supported by characterization via infrared spectroscopy, single crystal X-ray analysis, Mossbauer spectroscopy, and magnetic...

134 citations

Journal ArticleDOI
TL;DR: The aim is to quantify the potential of human activity recognition from kinetic energy harvesting (HARKE) and demonstrate that HARKE can save 79 percent of the overall system power consumption of conventional accelerometer-based HAR.
Abstract: Kinetic energy harvesting (KEH) may help combat battery issues in wearable devices. While the primary objective of KEH is to generate energy from human activities, the harvested energy itself contains information about human activities that most wearable devices try to detect using motion sensors. In principle, it is therefore possible to use KEH both as a power generator and a sensor for human activity recognition (HAR), saving sensor-related power consumption. Our aim is to quantify the potential of human activity recognition from kinetic energy harvesting (HARKE). We evaluate the performance of HARKE using two independent datasets: (i) a public accelerometer dataset converted into KEH data through theoretical modeling; and (ii) a real KEH dataset collected from volunteers performing activities of daily living while wearing a data-logger that we built of a piezoelectric energy harvester. Our results show that HARKE achieves an accuracy of 80 to 95 percent, depending on the dataset and the placement of the device on the human body. We conduct detailed power consumption measurements to understand and quantify the power saving opportunity of HARKE. The results demonstrate that HARKE can save 79 percent of the overall system power consumption of conventional accelerometer-based HAR.

134 citations


Authors

Showing all 9433 results

NameH-indexPapersCitations
Robert Stone1601756167901
Tobin J. Marks1591621111604
Jeffrey R. Long11842568415
Xiao-Ming Chen10859642229
Mark C. Hersam10765946813
Michael Schulz10075950719
Christopher J. Chang9830736101
Marco Cavaglia9337260157
Daniel W. Armstrong9375935819
Sajal K. Das85112429785
Ming-Liang Tong7936423537
Ludwig J. Gauckler7851725926
Rodolphe Clérac7850622604
David W. Fahey7731530176
Kai Wang7551922819
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Delft University of Technology
94.4K papers, 2.7M citations

93% related

Virginia Tech
95.2K papers, 2.9M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022162
20211,047
20201,180
20191,195
20181,108