scispace - formally typeset
Search or ask a question
Institution

Missouri University of Science and Technology

EducationRolla, Missouri, United States
About: Missouri University of Science and Technology is a education organization based out in Rolla, Missouri, United States. It is known for research contribution in the topics: Control theory & Artificial neural network. The organization has 9380 authors who have published 21161 publications receiving 462544 citations. The organization is also known as: Missouri S&T & University of Missouri–Rolla.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simulated high level waste, whose major components were 54.6 wt% Na2O, 14.9 wt%, P2O5 and 8.3 wt%), was successfully vitrified into iron phosphate wasteforms whose chemical durability was equivalent to that of borosilicate glass wasteforms.
Abstract: Up to 40 wt% of a simulated high level waste, whose major components were 54.6 wt% Na2O, 14.9 wt% P2O5 and 8.3 wt% Fe2O3, was successfully vitrified into iron phosphate wasteforms whose chemical durability was equivalent to that of borosilicate glass wasteforms. Because of their high fluidity, the iron phosphate wasteforms could be melted in as little as 30 min at temperatures between 1015°C and 1200°C. The addition of 3–7 wt% CaF2 to the batch decreased the melting time and temperature, by as much as 100°C, and improved the chemical durability, especially for crystallized iron phosphate wasteforms. Iron phosphate wasteforms are concluded to be a practical alternative for vitrifying those nuclear wastes not well suited for borosilicate glasses.

324 citations

Journal ArticleDOI
03 Jun 2004-Nature
TL;DR: Inelastic neutron scattering is used to characterize possible mediating excitations at higher energies in YBa2Cu3O6.6, and observes a square-shaped continuum of excitations peaked at incommensurate positions.
Abstract: In conventional superconductors, lattice vibrations (phonons) mediate the attraction between electrons that is responsible for superconductivity1. The high transition temperatures (high-Tc) of the copper oxide superconductors has led to collective spin excitations being proposed as the mediating excitations in these materials2. The mediating excitations must be strongly coupled to the conduction electrons, have energy greater than the pairing energy, and be present at Tc. The most obvious feature in the magnetic excitations of high-Tc superconductors such as YBa2Cu3O6+x is the so-called ‘resonance’3,4,5,6. Although the resonance may be strongly coupled to the superconductivity3,4,5,6,7,8, it is unlikely to be the main cause, because it has not been found in the La2-x(Ba,Sr)xCuO4 family and is not universally present in Bi2Sr2CaCu2O8+δ (ref. 9). Here we use inelastic neutron scattering to characterize possible mediating excitations at higher energies in YBa2Cu3O6.6. We observe a square-shaped continuum of excitations peaked at incommensurate positions. These excitations have energies greater than the superconducting pairing energy, are present at Tc, and have spectral weight far exceeding that of the ‘resonance’. The discovery of similar excitations in La2–xBaxCuO4 (ref. 10) suggests that they are a general property of the copper oxides, and a candidate for mediating the electron pairing.

323 citations

Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1335 moreInstitutions (144)
TL;DR: The data recorded by these instruments during their first and second observing runs are described, including the gravitational-wave strain arrays, released as time series sampled at 16384 Hz.

320 citations

Journal ArticleDOI
TL;DR: In this paper, friction stir processing was applied to a magnesium alloy to generate various grain sizes with the same intense basal texture, and subsequent tensile deformation along two orthogonal directions by easy activation or inhibition of basal slip followed the Hall-Petch relationship between yield stress and grain size in both directions.

320 citations

Journal ArticleDOI
TL;DR: An optimization algorithm is used to minimize the expected cost and emissions of the UC schedule for the set of scenarios indicating that the smart grid has the potential to maximally utilize RESs and GVs to reduce cost and emission from the power system and transportation sector.
Abstract: The power system and transportation sector are our planet's main sources of greenhouse gas emissions. Renewable energy sources (RESs), mainly wind and solar, can reduce emissions from the electric energy sector; however, they are very intermittent. Likewise, next generation plug-in vehicles, which include plug-in hybrid electric vehicles and electric vehicles with vehicle-to-grid capability, referred to as gridable vehicles (GVs) by the authors, can reduce emissions from the transportation sector. GVs can be used as loads, energy sources (small portable power plants) and energy storage units in a smart grid integrated with renewable energy sources. However, uncertainty surrounds the controllability of GVs. Forecasted load is used in unit commitment (UC); however, the actual load usually differs from the forecasted one. Thus, UC with plug-in vehicles under uncertainty in a smart grid is very complex considering smart charging and discharging to and from various energy sources and loads to reduce both cost and emissions. A set of valid scenarios is considered for the uncertainties of wind and solar energy sources, load and GVs. In this paper, an optimization algorithm is used to minimize the expected cost and emissions of the UC schedule for the set of scenarios. Results are presented indicating that the smart grid has the potential to maximally utilize RESs and GVs to reduce cost and emissions from the power system and transportation sector.

318 citations


Authors

Showing all 9433 results

NameH-indexPapersCitations
Robert Stone1601756167901
Tobin J. Marks1591621111604
Jeffrey R. Long11842568415
Xiao-Ming Chen10859642229
Mark C. Hersam10765946813
Michael Schulz10075950719
Christopher J. Chang9830736101
Marco Cavaglia9337260157
Daniel W. Armstrong9375935819
Sajal K. Das85112429785
Ming-Liang Tong7936423537
Ludwig J. Gauckler7851725926
Rodolphe Clérac7850622604
David W. Fahey7731530176
Kai Wang7551922819
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Delft University of Technology
94.4K papers, 2.7M citations

93% related

Virginia Tech
95.2K papers, 2.9M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022162
20211,047
20201,180
20191,195
20181,108