scispace - formally typeset
Search or ask a question
Institution

Missouri University of Science and Technology

EducationRolla, Missouri, United States
About: Missouri University of Science and Technology is a education organization based out in Rolla, Missouri, United States. It is known for research contribution in the topics: Control theory & Artificial neural network. The organization has 9380 authors who have published 21161 publications receiving 462544 citations. The organization is also known as: Missouri S&T & University of Missouri–Rolla.


Papers
More filters
Journal ArticleDOI
TL;DR: A focused review of CSCW methods and ideas is provided-the authors review aspects of the field that could be applied to improve the design and deployment of medical information systems.

189 citations

Proceedings Article
04 May 2016
TL;DR: The melanoma diagnosis in dermoscopic images was addressed by the Dermoscope Image Analysis Benchmark Challenge (DIAB) as discussed by the authors, which was divided into sub-challenges for each task involved in image analysis, including lesion segmentation, feature detection within a lesion and classification of melanoma.
Abstract: In this article, we describe the design and implementation of a publicly accessible dermatology image analysis benchmark challenge. The goal of the challenge is to sup- port research and development of algorithms for automated diagnosis of melanoma, a lethal form of skin cancer, from dermoscopic images. The challenge was divided into sub-challenges for each task involved in image analysis, including lesion segmentation, dermoscopic feature detection within a lesion, and classification of melanoma. Training data included 900 images. A separate test dataset of 379 images was provided to measure resultant performance of systems developed with the training data. Ground truth for both training and test sets was generated by a panel of dermoscopic experts. In total, there were 79 submissions from a group of 38 participants, making this the largest standardized and comparative study for melanoma diagnosis in dermoscopic images to date. While the official challenge duration and ranking of participants has concluded, the datasets remain available for further research and development.

189 citations

Journal ArticleDOI
TL;DR: Several different derivatized {beta}-cyclodextrins were synthesized and used as chiral stationary phases in normal phase liquid chromatography as mentioned in this paper, and the first successful cyclodextrin-based, normal phase separation of enantiomers was accomplished on these derivative phases.
Abstract: Several different derivatized {beta}-cyclodextrins were synthesized and used as chiral stationary phases in normal-phase liquid chromatography. The multiply substituted derivatives were made with acetic anhydride, (R)- and (S)-1-(1-naphthyl)ethyl isocyanate, 2,6-dimethylphenyl isocyanate, and p-toluoyl chloride. The first successful cyclodextrin-based, normal-phase separation of enantiomers was accomplished on these derivative phases. In contrast to chiral separations on the native {beta}-cyclodextrin stationary phase, the enantiomeric separation mechanism on these new phases is not thought to be dependent on inclusion complexation. The similarities and differences between the derivatized cyclodextrin stationary phases and the cellulosic stationary phases are discussed.

189 citations

Journal ArticleDOI
TL;DR: In this article, a parametric computational study of energy deposition upstream of generic two-dimensional and axisymmetric blunt bodies at Mach numbers of 6.5 and 10 is performed utilizing a full Navier-Stokes computational fluid dynamics code.
Abstract: A parametric computational study of energy deposition upstream of generic two-dimensional and axisymmetric blunt bodies at Mach numbers of 6.5 and 10 is performed utilizing a full Navier-Stokes computational fluid dynamics code. The energy deposition modifies the upstream shock structure and results in large wave drag reduction and very high power effectiveness. Specifically, drag is reduced to values as low as 30% of baseline drag (no energy deposited into flow) and power effectiveness ratios (ratio of thrust power saved to power deposited into the flow) of up to 33 are obtained. The fluid dynamic and thermodynamic bases of the observed drag reduction are examined

189 citations

Journal ArticleDOI
06 Mar 2003-Nature
TL;DR: Three-dimensional images of the complete electron emission pattern for the single ionization of helium by the impact of C6+ ions of energy 100 MeV per a.m.u. (a four-body system) are reported and a higher-order ionization mechanism, involving the interaction between the projectile and the target nucleus, is proposed to explain these features.
Abstract: To understand the physical processes that occur in nature we need to obtain a solid concept about the ‘fundamental’ forces acting between pairs of elementary particles. It is also necessary to describe the temporal and spatial evolution of many mutually interacting particles under the influence of these forces. This latter step, known as the few-body problem, remains an important unsolved problem in physics. Experiments involving atomic collisions represent a useful testing ground for studying the few-body problem. For the single ionization of a helium atom by charged particle impact, kinematically complete experiments have been performed1,2,3,4,5,6 since 1969 (ref. 7). The theoretical analysis of such experiments was thought to yield a complete picture of the basic features of the collision process, at least for large collision energies8,9,10,11,12,13,14. These conclusions are, however, almost exclusively based on studies of restricted electron-emission geometries1,2,3. Here, we report three-dimensional images of the complete electron emission pattern for the single ionization of helium by the impact of C6+ ions of energy 100 MeV per a.m.u. (a four-body system) and observe features that have not been predicted by any published theoretical model. We propose a higher-order ionization mechanism, involving the interaction between the projectile and the target nucleus, to explain these features.

189 citations


Authors

Showing all 9433 results

NameH-indexPapersCitations
Robert Stone1601756167901
Tobin J. Marks1591621111604
Jeffrey R. Long11842568415
Xiao-Ming Chen10859642229
Mark C. Hersam10765946813
Michael Schulz10075950719
Christopher J. Chang9830736101
Marco Cavaglia9337260157
Daniel W. Armstrong9375935819
Sajal K. Das85112429785
Ming-Liang Tong7936423537
Ludwig J. Gauckler7851725926
Rodolphe Clérac7850622604
David W. Fahey7731530176
Kai Wang7551922819
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Delft University of Technology
94.4K papers, 2.7M citations

93% related

Virginia Tech
95.2K papers, 2.9M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022162
20211,047
20201,180
20191,195
20181,108