scispace - formally typeset
Search or ask a question
Institution

Missouri University of Science and Technology

EducationRolla, Missouri, United States
About: Missouri University of Science and Technology is a education organization based out in Rolla, Missouri, United States. It is known for research contribution in the topics: Control theory & Artificial neural network. The organization has 9380 authors who have published 21161 publications receiving 462544 citations. The organization is also known as: Missouri S&T & University of Missouri–Rolla.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a review of adsorption-based removal of SOx/NOx impuritie, showing that significant energy and cost savings can potentially be realized by using advanced adsorbent materials.
Abstract: One of the main challenges in the power and chemical industries is to remove generated toxic or environmentally harmful gases before atmospheric emission. To comply with stringent environmental and pollutant emissions control regulations, coal-fired power plants must be equipped with new technologies that are efficient and less energy-intensive than status quo technologies for flue gas cleanup. While conventional sulfur oxide (SOx) and nitrogen oxide (NOx) removal technologies benefit from their large-scale implementation and maturity, they are quite energy-intensive. In view of this, the development of lower-cost, less energy-intensive technologies could offer an advantage. Significant energy and cost savings can potentially be realized by using advanced adsorbent materials. One of the major barriers to the development of such technologies remains the development of materials that are efficient and productive in removing flue gas contaminants. In this review, adsorption-based removal of SOx/NOx impuritie...

178 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the process of the microalgae biofuel's commercial process and investigated the barriers of the technologies especially the energy-extensive part and the pilot scale test which is the crucial part of the process.
Abstract: Algae is a potent renewable source with the favorable characteristics. However, there are still many barriers in the related theory, techniques and industrialization, which lead to the high cost of the algae biofuel. This paper reviewed the process of the microalgae biofuel's commercial process. Investigated the barriers of the technologies especially the energy-extensive part and the pilot scale test which is the crucial part of the process. The policy supports of American, EU and China for microalgae biofuel industry and the effect of them was summarized at this paper. Numbers of pilot scale program has launched in the support of the government and the private investment, while there is still some distance from scale up production. Algae fundamental biology research, co-products’ production to make profits in short term, and support from government are key strategies of algae commercialization.

177 citations

Journal ArticleDOI
TL;DR: Inspired by the designs of natural materials such as cortical bone and nacre, glass‐ceramic and inorganic/polymer composite scaffolds created with extrinsic toughening mechanisms are showing potential for both high strength and mechanical reliability.
Abstract: The need for implants to repair large bone defects is driving the development of porous synthetic scaffolds with the requisite mechanical strength and toughness in vivo. Recent developments in the use of design principles and novel fabrication technologies are paving the way to create synthetic scaffolds with promising potential for reconstituting bone in load-bearing sites. This article reviews the state of the art in the design and fabrication of bioactive glass and ceramic scaffolds that have improved mechanical properties for structural bone repair. Scaffolds with anisotropic and periodic structures can be prepared with compressive strengths comparable to human cortical bone (100-150 MPa), while scaffolds with an isotropic structure typically have strengths in the range of trabecular bone (2-12 MPa). However, the mechanical response of bioactive glass and ceramic scaffolds in multiple loading modes such as flexure and torsion - as well as their mechanical reliability, fracture toughness, and fatigue resistance - has received little attention. Inspired by the designs of natural materials such as cortical bone and nacre, glass-ceramic and inorganic/polymer composite scaffolds created with extrinsic toughening mechanisms are showing potential for both high strength and mechanical reliability. Future research should include improved designs that provide strong scaffolds with microstructures conducive to bone ingrowth, and evaluation of these scaffolds in large animal models for eventual translation into clinical applications.

176 citations

Journal ArticleDOI
TL;DR: Selective, high-efficiency separations of intact bacteria may, in some cases, allow them to be identified and quantified in much the same way that molecules are done today.
Abstract: Selective, high-efficiency separations of intact bacteria may, in some cases, allow them to be identified and quantified in much the same way that molecules are done today. Two different capillary electrokinetic approaches were utilized. The first approach used a dissolved polymer-based CE separation that may be affected by size and shape considerations. Another approach uses capillary isoelectric focusing to separate bacteria by their surface charge or isoelectric point. Good peak shapes and extremely high efficiencies are observed (up to ∼1 600 000 theoretical plates/m). Careful sample preparation and separation runs are essential in order to obtain reproducible separations. Expansion of these types of rapid, efficient microbial separations could have profound effects on many branches of science and technology.

176 citations


Authors

Showing all 9433 results

NameH-indexPapersCitations
Robert Stone1601756167901
Tobin J. Marks1591621111604
Jeffrey R. Long11842568415
Xiao-Ming Chen10859642229
Mark C. Hersam10765946813
Michael Schulz10075950719
Christopher J. Chang9830736101
Marco Cavaglia9337260157
Daniel W. Armstrong9375935819
Sajal K. Das85112429785
Ming-Liang Tong7936423537
Ludwig J. Gauckler7851725926
Rodolphe Clérac7850622604
David W. Fahey7731530176
Kai Wang7551922819
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Delft University of Technology
94.4K papers, 2.7M citations

93% related

Virginia Tech
95.2K papers, 2.9M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022162
20211,047
20201,180
20191,195
20181,108