scispace - formally typeset
Search or ask a question
Institution

Mobil

About: Mobil is a based out in . It is known for research contribution in the topics: Catalysis & Zeolite. The organization has 7085 authors who have published 10642 publications receiving 237497 citations. The organization is also known as: Socony-Vacuum Oil Company & Standard Oil Company of New York.


Papers
More filters
Patent
Dean P Nichols1
14 Mar 1983
TL;DR: In this paper, a portion of the crude oil in situ in the bottom of the well so as to drive off the lighter ends leaving the heavy ends and asphaltenes at the bottom.
Abstract: Wells drilled in poorly consolidated sand formations can be consolidated by heating a portion of the crude oil in situ in the bottom of the well so as to drive off the lighter ends leaving the heavy ends and asphaltenes at the bottom of the well. If additional pressure is then added at the top of the well, the heated fraction is forced into the surrounding cooler formations where it condenses and cools forming a semi-solid material tending to restrain sand from being produced upon further production of the well. The heated fluids will flow into any channels formed in the sand by said production. Continued application of pressure will cause flow channels to be formed in the cooling heavy portion by the light ends, ensuring permeability of the structure.

69 citations

Patent
17 Nov 1987
TL;DR: In this article, a synthetic porous zeolite, identified as ZSM-57, was described, which exhibits a characteristic X-ray diffraction pattern and has a ratio of XO 2 :Y 2 O 3 of at least 4.
Abstract: This invention relates to a synthetic porous zeolite, identified as ZSM-57, a method for its preparation. This crystalline material may have a ratio of XO 2 :Y 2 O 3 of at least 4, wherein X represents silicon and/or germanium and Y represents aluminum, boron, chromium, iron and/or gallium. The silica/alumina form of this crystalline material has a silica to alumina ratio of at least 4 and may be prepared with directing agents which are N,N,N,N',N',N'-hexaethylpentane-diammonium compounds. The crystalline material exhibits a characteristic X-ray diffraction pattern.

69 citations

Patent
Hartley Owen1, Paul H. Schipper1
07 Aug 1992
TL;DR: In this article, a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerators is used to achieve turbulent or fast fluidized bed regeneration of spent FCC catalyst in a bubbling bed regenerator.
Abstract: A process and apparatus for achieving turbulent or fast fluidized bed regeneration of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. A coke combustor vessel, which may be partially or totally open to the dilute phase above the bubbling bed, is added to the existing regenerator vessel Spent catalyst is discharged into the coke combustor, regenerated in a turbulent or fast fluidized bed, then discharged into the dilute phase region above the bubbling bed, either via a deflector or by simply overflowing the combustor. Regeneration of catalyst is completed in the bubbling dense bed, and/or an annular fast fluidized bed surrounding the coke combustor. Catalyst may be recycled from the dense bed to the coke combustor either by a flow line, or by adjusting relative heights of bubbling to fast fluidized bed. Staged regeneration increases coke burning capacity of the regenerator, reduces NOx emissions, and reduces catalyst deactivation.

68 citations

Patent
24 May 1990
TL;DR: In this article, a catalytic cracking catalyst mixture and process are disclosed, which comprises a cracking catalyst containing a matrix and a large pore molecular sieve and separate additive catalysts comprising at least one of a shape selective paraffin cracking/isomerization zeolite and a shape-selective aliphatic aromatization Zeolite.
Abstract: A catalytic cracking catalyst mixture and process are disclosed. The mixture comprises (a) a cracking catalyst containing a matrix and a large pore molecular sieve and (b) separate additive catalysts comprising at least one of a shape selective paraffin cracking/isomerization zeolite and a shape selective aliphatic aromatization zeolite. An exemplary catalyst mixture comprises dealuminized zeolite Y, optionally containing rare earth elements in an alumina-rich matrix, an additive catalyst of HZSM-5 in a matrix, and an additional additive catalyst of gallium ZSM-5 in a matrix. The alumina-rich matrix of the cracking catalyst acts a a sodium and metals sink. The large pore molecular sieve catalyst cracks large hydrocarbons to lighter paraffins and olefins. The shape selective paraffin cracking/isomerization component cracks/isomerizes the paraffins produced by the large pore moleular sieve. The shape selective aliphatic aromatization catalyst converts light paraffins and olefins into aromatics. A single shape selective zeolite, e.g., ZSM-5 with a controlled amount of an aromatization component such as gallium, may promote both paraffin cracking/isomerization and aromatization. The additive catalysts have physical properties, e.g., size, shape, density and attrition resistance which are substantially the same as the cracking catalyst.

68 citations

Journal ArticleDOI
TL;DR: In this article, the authors use residual salt analysis (RSA) to identify barriers to vertical fluid flow in oil and water legs, which can be used to predict the dynamic behavior of the reservoir later in field life.
Abstract: Fluid composition is a valuable addition to the battery of static'' data available during reservoir appraisal that can be used to predict the dynamic behavior of the reservoir later in field life. This is because fluid data are not truly static; natural fluid mixing is a dynamic process that occurs over a long (geologic) time scale. Oil compositional differences, especially those that parallel changes in density, should be mixed rapidly by convection; their preservation indicates barriers to fluid flow. Water variations, now measurable on conventional core samples by use of residual salt analysis (RSA), help identify barriers to vertical fluid flow in oil and water legs.

68 citations


Authors

Showing all 7085 results

NameH-indexPapersCitations
Galen D. Stucky144958101796
James A. Russell124102487929
Thomas Bein10967742800
George J. Hirasaki6527814164
Kai-Kit Wong6160514680
James Paul5925213394
Sankaran Sundaresan5824110083
Fabio Rocca5732519186
Roland Winston5547313911
Kyger C. Lohmann5414410112
Maurice A. Biot5015437311
Kenneth E. Peters4817113920
Paul L. Stoffa472609323
Clarence D. Chang472399047
Bruce H. Wilkinson451186483
Network Information
Related Institutions (5)
Chevron Corporation
14.5K papers, 271.7K citations

92% related

ExxonMobil
23.7K papers, 535.7K citations

90% related

Royal Dutch Shell
23.6K papers, 551.6K citations

88% related

Colorado School of Mines
20.6K papers, 602.7K citations

85% related

Halliburton
18K papers, 255.1K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202112
202011
201910
201818
201712
201610