scispace - formally typeset
Search or ask a question
Institution

Molecular Medicine Partnership Unit

About: Molecular Medicine Partnership Unit is a based out in . It is known for research contribution in the topics: Hepcidin & Ferroportin. The organization has 269 authors who have published 358 publications receiving 27391 citations.


Papers
More filters
Journal ArticleDOI
18 Dec 2008-Nature
TL;DR: It is shown that microRNA-21 regulates the ERK–MAP kinase signalling pathway in cardiac fibroblasts, which has impacts on global cardiac structure and function and confirms miR-21 as a disease target in heart failure and establishes the therapeutic efficacy of microRNA therapeutic intervention in a cardiovascular disease setting.
Abstract: MicroRNAs comprise a broad class of small non-coding RNAs that control expression of complementary target messenger RNAs. Dysregulation of microRNAs by several mechanisms has been described in various disease states including cardiac disease. Whereas previous studies of cardiac disease have focused on microRNAs that are primarily expressed in cardiomyocytes, the role of microRNAs expressed in other cell types of the heart is unclear. Here we show that microRNA-21 (miR-21, also known as Mirn21) regulates the ERK-MAP kinase signalling pathway in cardiac fibroblasts, which has impacts on global cardiac structure and function. miR-21 levels are increased selectively in fibroblasts of the failing heart, augmenting ERK-MAP kinase activity through inhibition of sprouty homologue 1 (Spry1). This mechanism regulates fibroblast survival and growth factor secretion, apparently controlling the extent of interstitial fibrosis and cardiac hypertrophy. In vivo silencing of miR-21 by a specific antagomir in a mouse pressure-overload-induced disease model reduces cardiac ERK-MAP kinase activity, inhibits interstitial fibrosis and attenuates cardiac dysfunction. These findings reveal that microRNAs can contribute to myocardial disease by an effect in cardiac fibroblasts. Our results validate miR-21 as a disease target in heart failure and establish the therapeutic efficacy of microRNA therapeutic intervention in a cardiovascular disease setting.

2,206 citations

Journal ArticleDOI
09 Jul 2010-Cell
TL;DR: How the two distinct systems of iron metabolism function and how they "tango" together in a coordinated manner are described are described.

1,623 citations

Journal ArticleDOI
TL;DR: The functional annotations of OGs have been expanded to also provide Gene Ontology terms, KEGG pathways and SMART/Pfam domains for each group, and eggNOG now provides pairwise orthology relationships within OGs based on analysis of phylogenetic trees.
Abstract: eggNOG is a public resource that provides Orthologous Groups (OGs) of proteins at different taxonomic levels, each with integrated and summarized functional annotations. Developments since the latest public release include changes to the algorithm for creating OGs across taxonomic levels, making nested groups hierarchically consistent. This allows for a better propagation of functional terms across nested OGs and led to the novel annotation of 95 890 previously uncharacterized OGs, increasing overall annotation coverage from 67% to 72%. The functional annotations of OGs have been expanded to also provide Gene Ontology terms, KEGG pathways and SMART/Pfam domains for each group. Moreover, eggNOG now provides pairwise orthology relationships within OGs based on analysis of phylogenetic trees. We have also incorporated a framework for quickly mapping novel sequences to OGs based on precomputed HMM profiles. Finally, eggNOG version 4.5 incorporates a novel data set spanning 2605 viral OGs, covering 5228 proteins from 352 viral proteomes. All data are accessible for bulk downloading, as a web-service, and through a completely redesigned web interface. The new access points provide faster searches and a number of new browsing and visualization capabilities, facilitating the needs of both experts and less experienced users. eggNOG v4.5 is available at http://eggnog.embl.de.

1,580 citations

Journal ArticleDOI
10 Dec 2015-Nature
TL;DR: A unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa is reported, highlighting the need to disentangle gut microbiota signatures of specific human diseases from those of medication.
Abstract: In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis. Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication.

1,473 citations

Journal ArticleDOI
TL;DR: The Environment for Tree Exploration v3 is presented, featuring numerous improvements in the underlying library of methods, and providing a novel set of standalone tools to perform common tasks in comparative genomics and phylogenetics.
Abstract: The Environment for Tree Exploration (ETE) is a computational framework that simplifies the reconstruction, analysis, and visualization of phylogenetic trees and multiple sequence alignments. Here, we present ETE v3, featuring numerous improvements in the underlying library of methods, and providing a novel set of standalone tools to perform common tasks in comparative genomics and phylogenetics. The new features include (i) building gene-based and supermatrix-based phylogenies using a single command, (ii) testing and visualizing evolutionary models, (iii) calculating distances between trees of different size or including duplications, and (iv) providing seamless integration with the NCBI taxonomy database. ETE is freely available at http://etetoolkit.org.

1,452 citations


Authors

Showing all 269 results

NameH-indexPapersCitations
Peer Bork206697245427
Matthias W. Hentze11031941879
Wolfgang Huber90335106102
Anthony D. Ho8463628430
Jan O. Korbel8120445584
Hans-Georg Kräusslich7926824829
Rainer Pepperkok7622019978
Magnus von Knebel Doeberitz7227516473
Andreas E. Kulozik7126922982
Julio Saez-Rodriguez6833619188
Carsten Müller-Tidow6445517033
Martina U. Muckenthaler6321917431
John A. G. Briggs6217012054
Marcus A. Mall5830012703
Carsten Schultz522439124
Network Information
Related Institutions (5)
Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

90% related

Broad Institute
11.6K papers, 1.5M citations

89% related

National Institutes of Health
297.8K papers, 21.3M citations

89% related

Baylor College of Medicine
94.8K papers, 5M citations

89% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202158
202043
201928
201825
201725
201632