scispace - formally typeset
Search or ask a question
Institution

Monash University

EducationMelbourne, Victoria, Australia
About: Monash University is a education organization based out in Melbourne, Victoria, Australia. It is known for research contribution in the topics: Population & Poison control. The organization has 35920 authors who have published 100681 publications receiving 3027002 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the MLKL pseudokinase domain acts as a latch to restrain the N-terminal four-helix bundle (4HB) domain and that unleashing this domain results in formation of a high-molecular-weight, membrane-localized complex and cell death.
Abstract: Necroptosis is considered to be complementary to the classical caspase-dependent programmed cell death pathway, apoptosis. The pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) is an essential effector protein in the necroptotic cell death pathway downstream of the protein kinase Receptor Interacting Protein Kinase-3 (RIPK3). How MLKL causes cell death is unclear, however RIPK3–mediated phosphorylation of the activation loop in MLKL trips a molecular switch to induce necroptotic cell death. Here, we show that the MLKL pseudokinase domain acts as a latch to restrain the N-terminal four-helix bundle (4HB) domain and that unleashing this domain results in formation of a high-molecular-weight, membrane-localized complex and cell death. Using alanine-scanning mutagenesis, we identified two clusters of residues on opposing faces of the 4HB domain that were required for the 4HB domain to kill cells. The integrity of one cluster was essential for membrane localization, whereas MLKL mutations in the other cluster did not prevent membrane translocation but prevented killing; this demonstrates that membrane localization is necessary, but insufficient, to induce cell death. Finally, we identified a small molecule that binds the nucleotide binding site within the MLKL pseudokinase domain and retards MLKL translocation to membranes, thereby preventing necroptosis. This inhibitor provides a novel tool to investigate necroptosis and demonstrates the feasibility of using small molecules to target the nucleotide binding site of pseudokinases to modulate signal transduction.

460 citations

Journal ArticleDOI
TL;DR: In this paper, the optimal intensity of renal replacement therapy has been established, while the timing of when to commence RRT is now a focus of investigation, as well as when to start RRT in patients with septic AKI.
Abstract: Acute kidney injury (AKI) and sepsis carry consensus definitions. The simultaneous presence of both identifies septic AKI. Septic AKI is the most common AKI syndrome in ICU and accounts for approximately half of all such AKI. Its pathophysiology remains poorly understood, but animal models and lack of histological changes suggest that, at least initially, septic AKI may be a functional phenomenon with combined microvascular shunting and tubular cell stress. The diagnosis remains based on clinical assessment and measurement of urinary output and serum creatinine. However, multiple biomarkers and especially cell cycle arrest biomarkers are gaining acceptance. Prevention of septic AKI remains based on the treatment of sepsis and on early resuscitation. Such resuscitation relies on the judicious use of both fluids and vasoactive drugs. In particular, there is strong evidence that starch-containing fluids are nephrotoxic and decrease renal function and suggestive evidence that chloride-rich fluid may also adversely affect renal function. Vasoactive drugs have variable effects on renal function in septic AKI. At this time, norepinephrine is the dominant agent, but vasopressin may also have a role. Despite supportive therapies, renal function may be temporarily or completely lost. In such patients, renal replacement therapy (RRT) becomes necessary. The optimal intensity of this therapy has been established, while the timing of when to commence RRT is now a focus of investigation. If sepsis resolves, the majority of patients recover renal function. Yet, even a single episode of septic AKI is associated with increased subsequent risk of chronic kidney disease.

460 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the latest developments in this platform, examine where further development is necessary to achieve more functionalities in LNOI integrated optical circuits and make a few suggestions of interesting applications that could be realized in the platform.
Abstract: Lithium niobate on insulator (LNOI) technology is revolutionizing the lithium niobate industry, enabling higher performance, lower cost and entirely new devices and applications. The availability of LNOI wafers has sparked significant interest in the platform for integrated optical applications, as LNOI offers the attractive material properties of lithium niobate, while also offering the stronger optical confinement and a high optical element integration density that has driven the success of more mature silicon and silicon nitride (SiN) photonics platforms. Due to some similarities between LNOI and SiN, established techniques and standards can readily be adapted to the LNOI platform including a significant array of interface approaches, device designs and also heterogeneous integration techniques for laser sources and photodetectors. In this contribution, we review the latest developments in this platform, examine where further development is necessary to achieve more functionalities in LNOI integrated optical circuits and make a few suggestions of interesting applications that could be realized in this platform. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

460 citations

Journal ArticleDOI
TL;DR: Given the commensalism that exists between neurons and glia, it may be fruitful to view brain function not just as a series of interactions between neurons, but also as aseries of interactionsbetween neurons and their collaborating glial cells.
Abstract: In order for the brain to use the common amino acid glutamate as a neurotransmitter, it has been necessary to introduce a series of innovations that greatly restrict the availability of glutamate, so that it cannot degrade the signal-to-noise ratio of glutamatergic neurons. The most far-reaching innovations have been: i) to exclude the brain from access to glutamate in the systemic circulation by the blood-brain barrier, thereby making the brain autonomous in the production and disposal of glutamate; ii) to surround glutamatergic synapses with glial cells and endow these cells with much more powerful glutamate uptake carriers than the neurons themselves, so that most released transmitter glutamate is rapidly inactivated by uptake in glial cells; iii) to restrict to glial cells a key enzyme (glutamine synthetase) that is involved in the return of accumulated glutamate to neurons by amidation to glutamine, which has no transmitter activity, and can be safely released to the extracellular space, returned to neurons and deaminated to glutamate; iv) to restrict to glial cells two key enzymes (pyruvate carboxylase and cytosolic malic enzyme) that are involved in, respectively, de novo synthesis (from glucose) of the carbon skeleton of glutamate, and the return of the carbon skeleton of excess glutamate to the metabolic pathway for glucose oxidation. As a consequence of these innovations, neurons constantly require new carbon skeletons from glial to sustain their TCA cycle. When these supplies are withdrawn, neurons are unable to generate amino acid transmitters and their rate of oxidative metabolism is impaired. Given the commensalism that exists between neurons and glia, it may be fruitful to view brain function not just as a series of interactions between neurons, but also as a series of interactions between neurons and their collaborating glial cells.

460 citations


Authors

Showing all 36568 results

NameH-indexPapersCitations
Bert Vogelstein247757332094
Kenneth W. Kinzler215640243944
David J. Hunter2131836207050
David R. Williams1782034138789
Yang Yang1712644153049
Lei Jiang1702244135205
Dongyuan Zhao160872106451
Christopher J. O'Donnell159869126278
Leif Groop158919136056
Mark E. Cooper1581463124887
Theo Vos156502186409
Mark J. Smyth15371388783
Rinaldo Bellomo1471714120052
Detlef Weigel14251684670
Geoffrey Burnstock141148899525
Network Information
Related Institutions (5)
University of New South Wales
153.6K papers, 4.8M citations

97% related

University of Sydney
187.3K papers, 6.1M citations

97% related

University of Queensland
155.7K papers, 5.7M citations

97% related

University of Melbourne
174.8K papers, 6.3M citations

96% related

National University of Singapore
165.4K papers, 5.4M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023250
20221,020
20219,402
20208,419
20197,409
20186,437