scispace - formally typeset
Search or ask a question

Showing papers by "Moscow Institute of Physics and Technology published in 2013"


Journal ArticleDOI
TL;DR: The aim of this review article is to provide a comprehensive overview of advances achieved in the field of atomistic processes, phase transformations, simple and multicomponent nanosystems and peculiarities of mechanochemistry.
Abstract: The aim of this review article on recent developments of mechanochemistry (nowadays established as a part of chemistry) is to provide a comprehensive overview of advances achieved in the field of atomistic processes, phase transformations, simple and multicomponent nanosystems and peculiarities of mechanochemical reactions. Industrial aspects with successful penetration into fields like materials engineering, heterogeneous catalysis and extractive metallurgy are also reviewed. The hallmarks of mechanochemistry include influencing reactivity of solids by the presence of solid-state defects, interphases and relaxation phenomena, enabling processes to take place under non-equilibrium conditions, creating a well-crystallized core of nanoparticles with disordered near-surface shell regions and performing simple dry time-convenient one-step syntheses. Underlying these hallmarks are technological consequences like preparing new nanomaterials with the desired properties or producing these materials in a reproducible way with high yield and under simple and easy operating conditions. The last but not least hallmark is enabling work under environmentally friendly and essentially waste-free conditions (822 references).

908 citations


Journal ArticleDOI
TL;DR: The use of a thermal equilibrium plasma for combustion control dates back more than a hundred years to the advent of internal combustion (IC) engines and spark ignition systems and the same principles are still applied today to achieve high efficiency in various applications as mentioned in this paper.

789 citations


Journal ArticleDOI
M. Ablikim, M. N. Achasov1, Xiaocong Ai, O. Albayrak2  +365 moreInstitutions (50)
TL;DR: In this article, the process e(+)e(-) -> pi(+)pi(-) J/psi at a center-of-mass energy of 4.260 GeV using a 525 pb(-1) data sample collected with the BESIII detector operating at the Beijing Electron Positron Collider was studied.
Abstract: We study the process e(+)e(-) -> pi(+)pi(-) J/psi at a center-of-mass energy of 4.260 GeV using a 525 pb(-1) data sample collected with the BESIII detector operating at the Beijing Electron Positron Collider. The Born cross section is measured to be (62.9 +/- 1.9 +/- 3.7) pb, consistent with the production of the Y(4260). We observe a structure at around 3.9 GeV/c(2) in the pi(+/-) J/psi mass spectrum, which we refer to as the Z(c)(3900). If interpreted as a new particle, it is unusual in that it carries an electric charge and couples to charmonium. A fit to the pi(+/-) J/psi invariant mass spectrum, neglecting interference, results in a mass of (3899.0 +/- 3.6 +/- 4.9) MeV/c(2) and a width of (46 +/- 10 +/- 20) MeV. Its production ratio is measured to be R = (sigma(e(+)e(-) -> pi(+/-) Z(c)(3900)(-/+) -> pi(+)pi(-) J/psi)/sigma(e(+)e(-) -> pi(+)pi(-) J/psi)) = (21.5 +/- 3.3 +/- 7.5)%. In all measurements the first errors are statistical and the second are systematic.

677 citations


Journal ArticleDOI
Z. Q. Liu, C. P. Shen1, C. Z. Yuan, I. Adachi  +188 moreInstitutions (56)
TL;DR: In a study of Y(4260) → π+ π- J/φ decays, a structure is observed in the M(π(±)J/ψ) mass spectrum with 5.2σ significance that can be interpreted as a new charged charmoniumlike state.
Abstract: The cross section for ee+ e- → π+ π- J/ψ between 3.8 and 5.5 GeV is measured with a 967 fb(-1) data sample collected by the Belle detector at or near the Υ(nS) (n = 1,2,…,5) resonances. The Y(4260) state is observed, and its resonance parameters are determined. In addition, an excess of π+ π- J/ψ production around 4 GeV is observed. This feature can be described by a Breit-Wigner parametrization with properties that are consistent with the Y(4008) state that was previously reported by Belle. In a study of Y(4260) → π+ π- J/ψ decays, a structure is observed in the M(π(±)J/ψ) mass spectrum with 5.2σ significance, with mass M = (3894.5 ± 6.6 ± 4.5) MeV/c2 and width Γ = (63 ± 24 ± 26) MeV/c2, where the errors are statistical and systematic, respectively. This structure can be interpreted as a new charged charmoniumlike state.

622 citations


Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah  +2942 moreInstitutions (201)
TL;DR: In this paper, the spin and parity quantum numbers of the Higgs boson were studied based on the collision data collected by the ATLAS experiment at the LHC, and the results showed that the standard model spin-parity J(...

608 citations


Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2942 moreInstitutions (200)
TL;DR: In this article, the production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs were measured using the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of 7 TeV and 8 TeV, corresponding to an integrated luminosity of about 25/fb.

513 citations


Journal ArticleDOI
Betsy A. Read1, Jessica Kegel2, Mary J. Klute3, Alan Kuo4, Stephane C. Lefebvre5, Florian Maumus6, Christoph Mayer7, John P. Miller8, Adam Monier9, Asaf Salamov4, Jeremy R. Young10, María Aguilar3, Jean-Michel Claverie11, Stephan Frickenhaus2, Karina Gonzalez12, Emily K. Herman3, Yao-Cheng Lin13, Johnathan A. Napier14, Hiroyuki Ogata11, Analissa F. Sarno1, Jeremy Shmutz4, Declan C. Schroeder, Colomban de Vargas15, Frédéric Verret16, Peter von Dassow17, Klaus Valentin2, Yves Van de Peer13, Glen L. Wheeler18, Joel B. Dacks3, Charles F. Delwiche8, Sonya T. Dyhrman2, Sonya T. Dyhrman19, Sonya T. Dyhrman20, Gernot Glöckner21, Uwe John2, Thomas A. Richards22, Alexandra Z. Worden9, Xiaoyu Zhang1, Igor V. Grigoriev23, Andrew E. Allen24, Kay D. Bidle11, Kay D. Bidle25, Mark Borodovsky11, Chris Bowler15, Colin Brownlee26, Colin Brownlee1, J. Mark Cock12, Marek Eliáš27, Vadim N. Gladyshev28, Marco Groth1, Chittibabu Guda, Ahmad R. Hadaegh29, M. D. Iglesias-Rodriguez30, Jerry Jenkins16, Bethan M. Jones31, Tracy Lawson32, Florian Leese33, Erika Lindquist34, Alexei Lobanov27, Alexandre Lomsadze25, Shehre-Banoo Malik35, Mary E. Marsh36, Luke C. M. Mackinder15, Thomas Mock11, Bernd Mueller-Roeber37, António Pagarete38, Micaela S. Parker39, Ian Probert11, Hadi Quesneville15, Christine A. Raines31, Stefan A. Rensing2, Stefan A. Rensing15, Diego Mauricio Riaño-Pachón40, Sophie Richier41, Sophie Richier40, Sebastian D. Rokitta42, Yoshihiro Shiraiwa43, Darren M. Soanes42, Mark van der Giezen39, Thomas M. Wahlund41, Bryony A. P. Williams44, Willie Wilson43, Gordon Wolfe41, Louie L. Wurch40, Louie L. Wurch42 
11 Jul 2013-Nature
TL;DR: Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires, and reveals a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome.
Abstract: Coccolithophores have influenced the global climate for over 200 million years(1). These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems(2). They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space(3). Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean(4). Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.

430 citations


Journal ArticleDOI
20 Dec 2013-Science
TL;DR: These experiments establish that compounds violating chemical intuition can be thermodynamically stable even in simple systems at nonambient conditions.
Abstract: Sodium chloride (NaCl), or rocksalt, is well characterized at ambient pressure. As a result of the large electronegativity difference between Na and Cl atoms, it has highly ionic chemical bonding (with 1:1 stoichiometry dictated by charge balance) and B1-type crystal structure. By combining theoretical predictions and diamond anvil cell experiments, we found that new materials with different stoichiometries emerge at high pressures. Compounds such as Na3Cl, Na2Cl, Na3Cl2, NaCl3, and NaCl7 are theoretically stable and have unusual bonding and electronic properties. To test this prediction, we synthesized cubic and orthorhombic NaCl3 and two-dimensional metallic tetragonal Na3Cl. These experiments establish that compounds violating chemical intuition can be thermodynamically stable even in simple systems at nonambient conditions.

408 citations


Journal ArticleDOI
TL;DR: In this article, the authors identify the best conditions for efficient domain-wall motion by spin-orbit torques originating from the spin Hall effect or Rashba effect and demonstrate that the effect depends critically on the domain wall configuration, the current injection scheme, and the symmetry of the spinorbit torque.
Abstract: In our numerical study, we identify the best conditions for efficient domain-wall motion by spin-orbit torques originating from the spin Hall effect or Rashba effect. We demonstrate that the effect depends critically on the domain-wall configuration, the current injection scheme, and the symmetry of the spin-orbit torque. The best identified configuration corresponds to a N\'eel wall driven by the spin Hall effect in a narrow strip with perpendicular magnetic anisotropy. In this case, the domain-wall velocity can be a factor of 10 larger than that for the conventional current-in-plane spin-transfer torque.

391 citations


Journal ArticleDOI
M. Ablikim, M. N. Achasov1, O. Albayrak2, D. J. Ambrose  +365 moreInstitutions (52)
TL;DR: E+e-→π+π-hc at center-of-mass energies from 3.90 to 4.42 GeV is studied by using data samples collected with the BESIII detector operating at the Beijing Electron Positron Collider and a distinct structure, referred to as Zc(4020), is observed in the π±hc mass spectrum.
Abstract: We study e(+)e(-) -> pi(+) pi(-)h(c) at center-of-mass energies from 3.90 to 4.42 GeV by using data samples collected with the BESIII detector operating at the Beijing Electron Positron Collider. The Born cross sections are measured at 13 energies and are found to be of the same order of magnitude as those of e(+)e(-) -> pi(+) pi(-) J/Psi but with a different line shape. In the pi(+/-)h(c) mass spectrum, a distinct structure, referred to as Z(c)(4020) is observed at 4. 02 GeV/c(2). The Z(c)(4020) carries an electric charge and couples to charmonium. A fit to the pi(+/-)h(c) invariant mass spectrum, neglecting possible interferences, results in a mass of (4022.9 +/- 0.8 +/- 2.7) MeV/c(2) and a width of (7.9 +/- 2.7 +/- 2.6) MeV for the Z(c)(4020), where the first errors are statistical and the second systematic. The difference between the parameters of this structure and the Z(c) (4025) observed in the D*(D) over bar* final state is within 1.5 sigma, but whether they are the same state needs further investigation. No significant Z(c)(3900) signal is observed, and upper limits on the Z(c)(3900) production cross sections in pi +/- h(c) at center-of-mass energies of 4.23 and 4.26 GeVare set.

377 citations


Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, M. I. R. Alves2, C. Armitage-Caplan3  +467 moreInstitutions (88)
TL;DR: The ESA's Planck satellite was launched 14 May 2009 and has been scanning the microwave and sub-millimetre sky continuously since 12 August 2009 as discussed by the authors, where it has measured gravitational lensing of CMB anisotropies at greater than 25 sigma.
Abstract: The ESA's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the CMB and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the SZ effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter LCDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25 sigma. Planck finds no evidence for non-Gaussianity in the CMB. Planck's results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations derived from CMB data and that derived from SZ data. The Planck and WMAP power spectra are offset from each other by an average level of about 2% around the first acoustic peak.

Journal ArticleDOI
14 Mar 2013-Nature
TL;DR: The hilum cells of the ovarian surface epithelium show increased transformation potential after inactivation of tumour suppressor genes Trp53 and Rb1, whose pathways are altered frequently in the most aggressive and common type of human EOC, high-grade serous adenocarcinoma.
Abstract: Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer deaths among women in the United States, but its pathogenesis is poorly understood Some epithelial cancers are known to occur in transitional zones between two types of epithelium, whereas others have been shown to originate in epithelial tissue stem cells The stem cell niche of the ovarian surface epithelium (OSE), which is ruptured and regenerates during ovulation, has not yet been defined unequivocally Here we identify the hilum region of the mouse ovary, the transitional (or junction) area between the OSE, mesothelium and tubal (oviductal) epithelium, as a previously unrecognized stem cell niche of the OSE We find that cells of the hilum OSE are cycling slowly and express stem and/or progenitor cell markers ALDH1, LGR5, LEF1, CD133 and CK6B These cells display long-term stem cell properties ex vivo and in vivo, as shown by our serial sphere generation and long-term lineage-tracing assays Importantly, the hilum cells show increased transformation potential after inactivation of tumour suppressor genes Trp53 and Rb1, whose pathways are altered frequently in the most aggressive and common type of human EOC, high-grade serous adenocarcinoma Our study supports experimentally the idea that susceptibility of transitional zones to malignant transformation may be explained by the presence of stem cell niches in those areas Identification of a stem cell niche for the OSE may have important implications for understanding EOC pathogenesis

Journal ArticleDOI
TL;DR: It is revealed that strain progressively drives the average spin angle from in-plane to out-of-plane, a property used to tune the exchange bias and giant-magnetoresistive response of spin valves.
Abstract: Multiferroics are compounds that show ferroelectricity and magnetism. BiFeO3, by far the most studied, has outstanding ferroelectric properties, a cycloidal magnetic order in the bulk, and many unexpected virtues such as conductive domain walls or a low bandgap of interest for photovoltaics. Although this flurry of properties makes BiFeO3 a paradigmatic multifunctional material, most are related to its ferroelectric character, and its other ferroic property--antiferromagnetism--has not been investigated extensively, especially in thin films. Here we bring insight into the rich spin physics of BiFeO3 in a detailed study of the static and dynamic magnetic response of strain-engineered films. Using Mossbauer and Raman spectroscopies combined with Landau-Ginzburg theory and effective Hamiltonian calculations, we show that the bulk-like cycloidal spin modulation that exists at low compressive strain is driven towards pseudo-collinear antiferromagnetism at high strain, both tensile and compressive. For moderate tensile strain we also predict and observe indications of a new cycloid. Accordingly, we find that the magnonic response is entirely modified, with low-energy magnon modes being suppressed as strain increases. Finally, we reveal that strain progressively drives the average spin angle from in-plane to out-of-plane, a property we use to tune the exchange bias and giant-magnetoresistive response of spin valves.

Journal ArticleDOI
TL;DR: In this article, the authors systematically review the quasiadiabatic approximation and illustrate how it can be used to describe various phenomena in Earth's magnetosphere and to explain many effects observed by satellites.
Abstract: In many space plasma systems, especially when the magnetic field is weak, characteristic scales of the magnetic field inhomogeneity are much smaller than the Larmor radius of the ions. Over the last two decades, quasiadiabatic models of the dynamics of charged particles in such systems have been actively developed. In this paper, we systematically review the quasiadiabatic approximation and illustrate how it can be used to describe various phenomena in Earth's magnetosphere and to explain many effects observed by satellites.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2954 moreInstitutions (201)
TL;DR: In this paper, the results of a search for pair production of supersymmetric partners of the Standard Model third-generation quarks are reported using 20.1 fb-1 of pp collisions collected by the ATLAS experiment at the Large Hadron Collider.
Abstract: The results of a search for pair production of supersymmetric partners of the Standard Model third-generation quarks are reported. This search uses 20.1 fb-1 of pp collisions at sqrt{s}=8 TeV collected by the ATLAS experiment at the Large Hadron Collider. The lightest bottom and top squarks (b1 and t1 respectively) are searched for in a final state with large missing transverse momentum and two jets identified as originating from b-quarks. No excess of events above the expected level of Standard Model background is found. The results are used to set upper limits on the visible cross section for processes beyond the Standard Model. Exclusion limits at the 95% confidence level on the masses of the third-generation squarks are derived in phenomenological supersymmetric R-parity-conserving models in which either the bottom or the top squark is the lightest squark. The b1 is assumed to decay via b1->b chi0 and the t via t1->b chipm, with undetectable products of the subsequent decay of the chipm due to the small mass splitting between the chipm and the chi0.

Journal ArticleDOI
TL;DR: Functional analysis of gut microbiota samples from 96 healthy Russian adult subjects shows that the metabolic pathways exhibiting differential abundance in the novel types are primarily associated with the trade-off between the Bacteroidetes and Firmicutes phyla.
Abstract: The microbial community of the human gut has a crucial role in sustaining host homeostasis. High-throughput DNA sequencing has delineated the structural and functional configurations of gut metagenomes in world populations. The microbiota of the Russian population is of particular interest to researchers, because Russia encompasses a uniquely wide range of environmental conditions and ethnogeographical cohorts. Here we conduct a shotgun metagenomic analysis of gut microbiota samples from 96 healthy Russian adult subjects, which reveals novel microbial community structures. The communities from several rural regions display similarities within each region and are dominated by the bacterial taxa associated with the healthy gut. Functional analysis shows that the metabolic pathways exhibiting differential abundance in the novel types are primarily associated with the trade-off between the Bacteroidetes and Firmicutes phyla. The specific signatures of the Russian gut microbiota are likely linked to the host diet, cultural habits and socioeconomic status.

Journal ArticleDOI
TL;DR: The data suggest that an altered growth hormone/insulin-like growth factor 1 axis, which may be common to other long-lived bat species, together with adaptations such as hibernation and low reproductive rate, contribute to the exceptional lifespan of the Brandt's bat.
Abstract: Bats account for one-fifth of mammalian species, are the only mammals with powered flight, and are among the few animals that echolocate. The insect-eating Brandt’s bat (Myotis brandtii) is the longest-lived bat species known to date (lifespan exceeds 40 years) and, at 4–8 g adult body weight, is the most extreme mammal with regard to disparity between body mass and longevity. Here we report sequencing and analysis of the Brandt’s bat genome and transcriptome, which suggest adaptations consistent with echolocation and hibernation, as well as altered metabolism, reproduction and visual function. Unique sequence changes in growth hormone and insulin-like growth factor 1 receptors are also observed. The data suggest that an altered growth hormone/insulin-like growth factor 1 axis, which may be common to other long-lived bat species, together with adaptations such as hibernation and low reproductive rate, contribute to the exceptional lifespan of the Brandt’s bat.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, J. Abdallah4  +2937 moreInstitutions (202)
TL;DR: In this article, a search for new particles decaying to large numbers (7 or more) of jets, with missing transverse momentum and no isolated electrons or muons, was presented for supersymmetry-inspired models where gluinos are pair produced.
Abstract: A search is presented for new particles decaying to large numbers (7 or more) of jets, with missing transverse momentum and no isolated electrons or muons. This analysis uses 20.3 fb−1 of pp collision data at s√=8 TeV collected by the ATLAS experiment at the Large Hadron Collider. The sensitivity of the search is enhanced by considering the number of b-tagged jets and the scalar sum of masses of large-radius jets in an event. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of various simplified supersymmetry-inspired models where gluinos are pair produced, as well as an mSUGRA/CMSSM model.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, J. Abdallah4  +2936 moreInstitutions (203)
TL;DR: In this article, the distributions of event-by-event harmonic flow coefficients v (n) for n = 2-4 are measured in = 2.76 TeV Pb + Pb collisions using the ATLAS detector at the LHC.
Abstract: The distributions of event-by-event harmonic flow coefficients v (n) for n = 2- 4 are measured in = 2.76 TeV Pb + Pb collisions using the ATLAS detector at the LHC. The measurements are performed u ...

20 Aug 2013
TL;DR: The Brandt's bat (Myotis brandtii) is the longest-lived bat species known to date (lifespan exceeds 40 years) and, at 4.8 kg adult body weight, is the most extreme mammal with regard to disparity between body mass and longevity as discussed by the authors.
Abstract: Bats account for one-fifth of mammalian species, are the only mammals with powered flight, and are among the few animals that echolocate. The insect-eating Brandt’s bat (Myotis brandtii) is the longest-lived bat species known to date (lifespan exceeds 40 years) and, at 4–8 g adult body weight, is the most extreme mammal with regard to disparity between body mass and longevity. Here we report sequencing and analysis of the Brandt’s bat genome and transcriptome, which suggest adaptations consistent with echolocation and hibernation, as well as altered metabolism, reproduction and visual function. Unique sequence changes in growth hormone and insulin-like growth factor 1 receptors are also observed. The data suggest that an altered growth hormone/insulin-like growth factor 1 axis, which may be common to other long-lived bat species, together with adaptations such as hibernation and low reproductive rate, contribute to the exceptional lifespan of the Brandt’s bat.

Journal ArticleDOI
TL;DR: A novel magneto-optical phenomenon that originates solely from suitably designed nanostructured metal-dielectric material, the so-called Magneto-plasmonic crystal, which allows manipulating and exciting waveguide modes by a magnetic field and light of proper polarization.
Abstract: Magnetic field control of light is among the most intriguing methods for modulation of light intensity and polarization on sub-nanosecond timescales. The implementation in nanostructured hybrid materials provides a remarkable increase of magneto-optical effects. However, so far only the enhancement of already known effects has been demonstrated in such materials. Here we postulate a novel magneto-optical phenomenon that originates solely from suitably designed nanostructured metal-dielectric material, the so-called magneto-plasmonic crystal. In this material, an incident light excites coupled plasmonic oscillations and a waveguide mode. An in-plane magnetic field allows excitation of an orthogonally polarized waveguide mode that modifies optical spectrum of the magneto-plasmonic crystal and increases its transparency. The experimentally achieved light intensity modulation reaches 24%. As the effect can potentially exceed 100%, it may have great importance for applied nanophotonics. Further, the effect allows manipulating and exciting waveguide modes by a magnetic field and light of proper polarization.

Journal ArticleDOI
Paolo Soffitta1, Xavier Barcons2, Ronaldo Bellazzini, João Braga3, Enrico Costa1, George W. Fraser4, Szymon Gburek5, Juhani Huovelin6, Giorgio Matt7, Mark Pearce8, Mark Pearce9, Juri Poutanen10, Victor Reglero11, Andrea Santangelo12, R. A. Sunyaev13, Gianpiero Tagliaferri1, Martin C. Weisskopf14, Roberto Aloisio1, Elena Amato1, Primo Attina15, Magnus Axelsson8, Magnus Axelsson9, Luca Baldini16, Stefano Basso1, Stefano Bianchi7, Pasquale Blasi1, Johan Bregeon, Alessandro Brez, Niccolò Bucciantini1, Luciano Burderi17, Vadim Burwitz13, Piergiorgio Casella1, Eugene Churazov13, Marta Civitani1, Stefano Covino1, Rui M. Curado da Silva, Giancarlo Cusumano1, Mauro Dadina1, Flavio D'Amico3, Alessandra De Rosa1, Sergio Di Cosimo1, Giuseppe Di Persio1, Tiziana Di Salvo18, Michal Dovciak19, Ronald F. Elsner14, C. J. Eyles20, Andrew C. Fabian21, Sergio Fabiani1, Hua Feng22, Salvatore Giarrusso1, R. Goosmann, Paola Grandi1, Nicolas Grosso, G. L. Israel1, Miranda Jackson9, Miranda Jackson8, Philip Kaaret23, Vladimir Karas19, Michael Kuss, Dong Lai24, Giovanni La Rosa1, Josefin Larsson9, Josefin Larsson8, Stefan Larsson9, Stefan Larsson8, Luca Latronico, Antonio Maggio1, J.M. Maia, Frédéric Marin, Marco Maria Massai16, Teresa Mineo1, Massimo Minuti, E. Moretti8, E. Moretti9, Fabio Muleri1, Stephen L. O'Dell14, Giovanni Pareschi1, Giovanni Peres18, Melissa Pesce, Pierre-Olivier Petrucci25, Michele Pinchera, Delphine Porquet, Brian D. Ramsey14, Nanda Rea2, Fabio Reale18, J. M. Rodrigo11, Agata Różańska5, Alda Rubini1, Pawel Rudawy26, Felix Ryde8, Felix Ryde9, M. Salvati1, Valdivino Alexandre de Santiago3, Sergey Sazonov27, Sergey Sazonov28, Carmelo Sgrò, Eric H. Silver29, Gloria Spandre, Daniele Spiga1, Luigi Stella1, Toru Tamagawa, Francesco Tamborra7, Fabrizio Tavecchio1, T.H.V.T. Dias, Matthew van Adelsberg30, Kinwah Wu31, Silvia Zane31 
TL;DR: The X-ray Imaging Polarimetry Explorer (XIPE) as mentioned in this paper was proposed in 2012 to the first ESA call for a small mission with a launch in 2017, but the proposal was, unfortunately, not selected.
Abstract: X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 % in the 2–10 keV band in 105 s for pointed observations, and 0.6 % for an X10 class solar flare in the 15–35 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14.7 arcmin × 14.7 arcmin. The spectral resolution is 20 % at 6 keV and the time resolution is 8 μs. The imaging capabilities of the JET-X optics and of the GPD have been demonstrated by a recent calibration campaign at PANTER X-ray test facility of the Max-Planck-Institut fur extraterrestrische Physik (MPE, Germany). XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil). The data policy is organized with a Core Program that comprises three months of Science Verification Phase and 25 % of net observing time in the following 2 years. A competitive Guest Observer program covers the remaining 75 % of the net observing time.

Journal ArticleDOI
D. Liventsev, I. Adachi, Hiroaki Aihara1, K. Arinstein2  +172 moreInstitutions (53)
TL;DR: In this paper, a search for heavy neutrinos in $B$-meson decays was conducted using a data sample that contains $772\ifmmode\times\else\texttimes\fi{}{10}^{6}B\overline{B}$ pairs collected at the $\ensuremath{\Upsilon}(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy
Abstract: We report on a search for heavy neutrinos in $B$-meson decays. The results are obtained using a data sample that contains $772\ifmmode\times\else\texttimes\fi{}{10}^{6}B\overline{B}$ pairs collected at the $\ensuremath{\Upsilon}(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy ${e}^{+}{e}^{\ensuremath{-}}$ collider. No signal is observed and upper limits are set on mixing of heavy neutrinos with left-handed neutrinos of the Standard Model in the mass range $0.5--5.0\text{ }\text{ }\mathrm{GeV}/{c}^{2}$.

Journal ArticleDOI
TL;DR: In this paper, a simplified version of the colored HOMFLY polynomials, which describe Wilson loop averages in Chern-Simons theory, are replaced with superpolynomials for torus knots.
Abstract: The colored HOMFLY polynomials, which describe Wilson loop averages in Chern-Simons theory, possess an especially simple representation for torus knots, which begins from quantum R-matrix and ends up with a trivially-looking split W representation familiar from character calculus applications to matrix models and Hurwitz theory. Substitution of MacDonald polynomials for characters in these formulas provides a very simple description of “superpolynomials”, much simpler than the recently studied alternative which deforms relation to the WZNW theory and explicitly involves the Littlewood-Richardson coefficients. A lot of explicit expressions are presented for different representations (Young diagrams), many of them new. In particular, we provide the superpolynomial $ \mathcal{P}_{{\left[ 1 \right]}}^{{\left[ {m,km\pm 1} \right]}} $ for arbitrary m and k. The procedure is not restricted to the fundamental (all antisymmetric) representations and the torus knots.

Journal ArticleDOI
TL;DR: Pyteomics as mentioned in this paper is a cross-platform, open-source Python library providing a rich set of tools for MS-based proteomics, including LC-MS/MS data, search engine output, protein sequence databases, theoretical prediction of retention times, electrochemical properties of polypeptides, mass and m/z calculations, and sequence parsing.

Journal ArticleDOI
TL;DR: An overview of experimental data and theoretical computational methods for effective cross sections of charge exchange (electron capture) and electron loss (projectile ionization) processes involving heavy many-electron ions (like Xe qa,P b qa, W qa and U qa ) colliding with neutral atoms (H, He, N, Ne, Ar, Kr, Xe) in the E 10 keV/u-10 GeV/U energy range, i.e., from low up to relativistic energies as mentioned in this paper.
Abstract: An overview of experimental data and theoretical computational methods is given for effective cross sections of charge exchange (electron capture) and electron loss (projectile ionization) processes involving heavy many-electron ions (like Xe qa ,P b qa ,W qa ,U qa ) colliding with neutral atoms (H, He, N, Ne, Ar, Kr, Xe) in the E 10 keV/u-10 GeV/u energy range, i.e., from low up to relativistic energies. These charge- changing processes can occur with a high probability, reaching 10 ˇ14 ˇ10 ˇ16 cm 2 cross-section values and, therefore, they play a key role in the kinetics of laboratory and astrophysical plasmas and influence the lifetimes of ion beams in accelerator facilities. Multielectron capture and loss processes are consid- ered, as well, since their importance in the case of heavy atomic projectiles strongly increases, and a contribution to the total cross sections reaches more than 50%. An important aspect of the overview is a consideration of the influence of the inner-shell electrons of two colliding systemsand arole of isotope effects in electron capture by very slow ions (E 10ˇ100 eV/u) from hydrogen isotopes H, D, and T. A short description of the corresponding computer codes is given for the calculation of cross sections of electron capture and electron loss processes for complex atoms and ions over a wide collision energy range.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2939 moreInstitutions (203)
TL;DR: In this paper, the performance of various modified jet algorithms, or jet grooming techniques, for several jet types and event topologies is investigated for jets with transverse momentum larger than 300 GeV.
Abstract: This paper presents the application of a variety of techniques to study jet substructure. The performance of various modified jet algorithms, or jet grooming techniques, for several jet types and event topologies is investigated for jets with transverse momentum larger than 300 GeV. Properties of jets subjected to the mass-drop filtering, trimming, and pruning algorithms are found to have a reduced sensitivity to multiple proton-proton interactions, are more stable at high luminosity and improve the physics potential of searches for heavy boosted objects. Studies of the expected discrimination power of jet mass and jet substructure observables in searches for new physics are also presented. Event samples enriched in boosted W and Z bosons and top-quark pairs are used to study both the individual jet invariant mass scales and the efficacy of algorithms to tag boosted hadronic objects. The analyses presented use the full 2011 ATLAS dataset, corresponding to an integrated luminosity of 4.7 +/- 0.1 fb(-1) from proton-proton collisions produced by the Large Hadron Collider at a centre-of-mass energy of root s = 7 TeV.

Journal ArticleDOI
TL;DR: In this paper, the authors analyze the dynamic and stochastic properties of molecular dynamics systems connected with the local instability of trajectories and the errors of the numerical integration and propose a concept explaining the finite dynamic memory time and the emergence of irreversibility in real systems.
Abstract: The work is devoted to fundamental aspects of the classical molecular dynamics method, which was developed half a century ago as a means of solving computational problems in statistical physics and has now become one of the most important numerical methods in the theory of condensed state. At the same time, the molecular dynamics method based on solving the equations of motion for a multiparticle system proved to be directly related to the basic concepts of classical statistical physics, in particular, to the problem of the occurrence of irreversibility. This paper analyzes the dynamic and stochastic properties of molecular dynamics systems connected with the local instability of trajectories and the errors of the numerical integration. The probabilistic nature of classical statistics is discussed. We propose a concept explaining the finite dynamic memory time and the emergence of irreversibility in real systems.

Journal ArticleDOI
A.L. Sibidanov1, Kevin Varvell1, I. Adachi, Hiroaki Aihara2  +165 moreInstitutions (55)
TL;DR: In this article, the authors report the results of a study of the exclusive semileptonic decays in a hadronic decay model, where the events are tagged by fully reconstructing a second $B$ meson in the event.
Abstract: We report the results of a study of the exclusive semileptonic decays ${B}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{0}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}}$, ${\overline{B}}^{0}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}}$, ${B}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\rho}}^{0}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}}$, ${\overline{B}}^{0}\ensuremath{\rightarrow}{\ensuremath{\rho}}^{+}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}}$ and ${B}^{\ensuremath{-}}\ensuremath{\rightarrow}\ensuremath{\omega}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}}$, where $\ensuremath{\ell}$ represents an electron or a muon. The events are tagged by fully reconstructing a second $B$ meson in the event in a hadronic decay mode. The measured branching fractions are $\mathcal{B}({B}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{0}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}})=(0.80\ifmmode\pm\else\textpm\fi{}0.08\ifmmode\pm\else\textpm\fi{}0.04)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$, $\mathcal{B}({\overline{B}}^{0}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}})=(1.49\ifmmode\pm\else\textpm\fi{}0.09\ifmmode\pm\else\textpm\fi{}0.07)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$, $\mathcal{B}({B}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\rho}}^{0}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}})=(1.83\ifmmode\pm\else\textpm\fi{}0.10\ifmmode\pm\else\textpm\fi{}0.10)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$, $\mathcal{B}({\overline{B}}^{0}\ensuremath{\rightarrow}{\ensuremath{\rho}}^{+}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}})=(3.22\ifmmode\pm\else\textpm\fi{}0.27\ifmmode\pm\else\textpm\fi{}0.24)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$, and $\mathcal{B}({B}^{\ensuremath{-}}\ensuremath{\rightarrow}\ensuremath{\omega}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}})=(1.07\ifmmode\pm\else\textpm\fi{}0.16\ifmmode\pm\else\textpm\fi{}0.07)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$, where the first error is statistical and the second one is systematic. The obtained branching fractions are inclusive of soft photon emission. We also determine the branching fractions as a function of the 4-momentum transfer squared to the leptonic system ${q}^{2}=({p}_{\ensuremath{\ell}}+{p}_{\ensuremath{ u}}{)}^{2}$, where ${p}_{\ensuremath{\ell}}$ and ${p}_{\ensuremath{ u}}$ are the lepton and neutrino 4-momenta, respectively. Using the pion modes, a recent light cone sum rule calculation, lattice QCD results and a model-independent description of the hadronic form factor, a value of the Cabibbo-Kobayashi-Maskawa matrix element $|{V}_{ub}|=(3.52\ifmmode\pm\else\textpm\fi{}0.29)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3}$ is extracted. A structure in the two-pion invariant mass distribution near $1.3\text{ }\text{ }\mathrm{GeV}/{c}^{2}$, which might be dominated by the decay ${B}^{\ensuremath{-}}\ensuremath{\rightarrow}{f}_{2}(1270){\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}}$, ${f}_{2}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}$, is seen. These results are obtained from a $711\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$ data sample that contains $772\ifmmode\times\else\texttimes\fi{}{10}^{6}$ $B\overline{B}$ pairs, collected near the $\ensuremath{\Upsilon}(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy ${e}^{+}{e}^{\ensuremath{-}}$ collider.

Journal ArticleDOI
TL;DR: It is found that suspended graphene is in the conducting phase with unbroken chiral symmetry, which suggests that fluctuations of chirality and nonperturbative effects might still be quite important.
Abstract: We report on the results of the first-principles numerical study of spontaneous breaking of chiral (sublattice) symmetry in suspended monolayer graphene due to electrostatic interaction, which takes into account the screening of Coulomb potential by electrons on $\ensuremath{\sigma}$ orbitals. In contrast to the results of previous numerical simulations with unscreened potential, we find that suspended graphene is in the conducting phase with unbroken chiral symmetry. This finding is in agreement with recent experimental results by the Manchester group [D. C. Elias et al., Nat. Phys. 7, 701 (2011); A. S. Mayorov et al., Nano Lett. 12, 4629 (2012)]. Further, by artificially increasing the interaction strength, we demonstrate that suspended graphene is quite close to the phase transition associated with spontaneous chiral symmetry breaking, which suggests that fluctuations of chirality and nonperturbative effects might still be quite important.