scispace - formally typeset
Search or ask a question
Institution

Moscow Institute of Physics and Technology

EducationDolgoprudnyy, Russia
About: Moscow Institute of Physics and Technology is a education organization based out in Dolgoprudnyy, Russia. It is known for research contribution in the topics: Laser & Large Hadron Collider. The organization has 8594 authors who have published 16968 publications receiving 246551 citations. The organization is also known as: MIPT & Moscow Institute of Physics and Technology (State University).


Papers
More filters
Journal ArticleDOI
Albert M. Sirunyan, Armen Tumasyan, Wolfgang Adam1, Federico Ambrogi1  +2275 moreInstitutions (158)
TL;DR: In particular, the transverse momentum distribution of the top quarks is more steeply falling than predicted as mentioned in this paper, and the multiplicities of jets associated with the t (t) over bar production are measured.
Abstract: Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at root s = 13 TeV are measured as a function of kinematic variables of the top quarks and the top quark- antiquark (t (t) over bar) system. In addition, kinematic variables and multiplicities of jets associated with the t (t) over bar production are measured. This analysis is based on data collected by the CMS experiment at the LHC in 2016 corresponding to an integrated luminosity of 35.8 fb(-1). The measurements are performed in the lepton + jets decay channels with a single muon or electron and jets in the final state. The differential cross sections are presented at the particle level, within a phase space close to the experimental acceptance, and at the parton level in the full phase space. The results are compared to several standard model predictions that use different methods and approximations. The kinematic variables of the top quarks and the t (t) over bar system are reasonably described in general, though none predict all the measured distributions. In particular, the transverse momentum distribution of the top quarks is more steeply falling than predicted. The kinematic distributions and multiplicities of jets are adequately modeled by certain combinations of next-to-leading-order calculations and parton shower models.

84 citations

Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Federico Ambrogi  +2290 moreInstitutions (194)
TL;DR: In this article, a search for direct production of top squark pairs in events with jets and large transverse momentum imbalance is presented, based on proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector in 2016 at the CERN LHC.
Abstract: A search for direct production of top squark pairs in events with jets and large transverse momentum imbalance is presented. The data are based on proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector in 2016 at the CERN LHC, and correspond to an integrated luminosity of 35.9 fb−1. The search considers a variety of R-parity conserving supersymmetric models, including ones for which the top squark and neutralino masses are nearly degenerate. Specialized jet reconstruction tools are developed to exploit the unique characteristics of the signal topologies. With no significant excess of events observed above the standard model expectations, upper limits are set on the direct top squark pair production cross section in the context of simplified supersymmetric models for various decay hypotheses. Models with larger differences in mass between the top squark and neutralino are probed for masses up to 1040 and 500 GeV, respectively, whereas models with a more compressed mass hierarchy are probed up to 660 and 610 GeV, respectively. The smallest mass difference probed is for masses near to 550 and 540 GeV, respectively.

84 citations

Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Ece Aşılar  +2247 moreInstitutions (155)
TL;DR: In this paper, the cross section for the production of single top quarks in the t channel is measured in proton-proton collisions at 13 TeV with the CMS detector at the LHC.

84 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the NsXeR is a powerful pump, which is able to elicit action potentials in rat hippocampal neuronal cells up to their maximal intrinsic firing frequency, and they are an alternative to the well-known cation-selective channelrhodopsins.
Abstract: Generation of an electrochemical proton gradient is the first step of cell bioenergetics. In prokaryotes, the gradient is created by outward membrane protein proton pumps. Inward plasma membrane native proton pumps are yet unknown. We describe comprehensive functional studies of the representatives of the yet noncharacterized xenorhodopsins from Nanohaloarchaea family of microbial rhodopsins. They are inward proton pumps as we demonstrate in model membrane systems, Escherichia coli cells, human embryonic kidney cells, neuroblastoma cells, and rat hippocampal neuronal cells. We also solved the structure of a xenorhodopsin from the nanohalosarchaeon Nanosalina (NsXeR) and suggest a mechanism of inward proton pumping. We demonstrate that the NsXeR is a powerful pump, which is able to elicit action potentials in rat hippocampal neuronal cells up to their maximal intrinsic firing frequency. Hence, inwardly directed proton pumps are suitable for light-induced remote control of neurons, and they are an alternative to the well-known cation-selective channelrhodopsins.

84 citations

Journal ArticleDOI
TL;DR: This study provides initial insight into the complexity of human microRNA–mRNA interactions and reveals a group of microRNAs that are expressed at a very high level, while interacting with only a few mRNAs, which, indeed, serve as their specific expression regulators.
Abstract: MicroRNAs play a key role in the regulation of gene expression. A majority of microRNA-mRNA interactions remain unidentified. Despite extensive research, our ability to predict human microRNA-mRNA interactions using computational algorithms remains limited by a complexity of the models for non-canonical interactions, and an abundance of false-positive results. Here, we present the landscape of human microRNA-mRNA interactions derived from comprehensive analysis of HEK293 and Huh7.5 datasets, along with publicly available microRNA and mRNA expression data. We show that, while only 1-2% of human genes were the most regulated by microRNAs, few cell line-specific RNAs, including EEF1A1 and HSPA1B in HEK293 and AFP, APOB, and MALAT1 genes in Huh7.5, display substantial "sponge-like" properties. We revealed a group of microRNAs that are expressed at a very high level, while interacting with only a few mRNAs, which, indeed, serve as their specific expression regulators. In order to establish reliable microRNA-binding regions, we collected and systematically analyzed the data from 79 CLIP datasets of microRNA-binding sites. We report 46,805 experimentally confirmed mRNA-miRNA duplex regions. Resulting dataset is available at http://score.generesearch.ru/services/mirna/. Our study provides initial insight into the complexity of human microRNA-mRNA interactions.

84 citations


Authors

Showing all 8797 results

NameH-indexPapersCitations
Dominique Pallin132113188668
Vladimir N. Uversky13195975342
Lee Sawyer130134088419
Dmitry Novikov12734883093
Simon Lin12675469084
Zeno Dixon Greenwood126100277347
Christian Ohm12687369771
Alexey Myagkov10958645630
Stanislav Babak10730866226
Alexander Zaitsev10345348690
Vladimir Popov102103050257
Alexander Vinogradov9641040879
Gueorgui Chelkov9332141816
Igor Pshenichnov8336222699
Vladimir Popov8337026390
Network Information
Related Institutions (5)
Moscow State University
123.3K papers, 1.7M citations

94% related

Russian Academy of Sciences
417.5K papers, 4.5M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

86% related

University of Paris-Sud
52.7K papers, 2.1M citations

86% related

Royal Institute of Technology
68.4K papers, 1.9M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202368
2022238
20211,774
20202,246
20192,112
20181,902