scispace - formally typeset
Search or ask a question
Institution

Moscow Institute of Physics and Technology

EducationDolgoprudnyy, Russia
About: Moscow Institute of Physics and Technology is a education organization based out in Dolgoprudnyy, Russia. It is known for research contribution in the topics: Laser & Large Hadron Collider. The organization has 8594 authors who have published 16968 publications receiving 246551 citations. The organization is also known as: MIPT & Moscow Institute of Physics and Technology (State University).


Papers
More filters
Journal ArticleDOI
TL;DR: This work uses high-harmonic spectroscopy to measure laser-induced modifications of the electronic structure of molecules and shows that these robust observables reveal a substantial modification of the molecular electronic structure by the external laser field.
Abstract: All attosecond time-resolved measurements have so far relied on the use of intense near-infrared laser pulses. In particular, attosecond streaking, laser-induced electron diffraction and high-harmonic generation all make use of non-perturbative light–matter interactions. Remarkably, the effect of the strong laser field on the studied sample has often been neglected in previous studies. Here we use high-harmonic spectroscopy to measure laser-induced modifications of the electronic structure of molecules. We study high-harmonic spectra of spatially oriented CH3F and CH3Br as generic examples of polar polyatomic molecules. We accurately measure intensity ratios of even and odd-harmonic orders, and of the emission from aligned and unaligned molecules. We show that these robust observables reveal a substantial modification of the molecular electronic structure by the external laser field. Our insights offer new challenges and opportunities for a range of emerging strong-field attosecond spectroscopies.

60 citations

Journal ArticleDOI
01 Sep 2016-Icarus
TL;DR: In this paper, the authors measured the H 2 O abundance above Venus clouds in the 1.38 µm band, and provided an estimation of the cloud top altitude based on CO 2 bands in the range of 1.4-1.6 μm.

60 citations

Journal ArticleDOI
TL;DR: It is found that SRFA and lignosulfonate molecules contain 2-5 labile hydrogens, and their number increases with the number of oxygens in the molecule, while compounds ionizing in negative-ESI mode have one labile hydrogen that detaches during ESI ionization.
Abstract: A method to enumerate labile hydrogens in all constituents of molecular ensemble of natural organic matter (NOM) based on our previously developed simple hydrogen/deuterium (H/D) exchange (electrospray ionization (ESI) ion source (Kostyukevich et al. Anal. Chem. 2013, 85, 5330) and ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry is presented. The method was applied for analysis of Suwannee River fulvic acid (SRFA), which is an International Humic Substances Society standard, as well as Siberian crude oil; and lignosulfonate. We found that SRFA and lignosulfonate molecules contain 2–5 labile hydrogens, and their number increases with the number of oxygens in the molecule. Also, we observed that compounds of Siberian crude oil ionizing in positive-ESI mode do not have labile hydrogens, while compounds ionizing in negative-ESI mode have one labile hydrogen that detaches during ESI ionization.

60 citations

Journal ArticleDOI
TL;DR: A novel surface-based modeling approach is developed, which is able to predict particular conformations of TM dimers in good agreement with experiment but also provides screening of their conformational heterogeneity, and finds that the approximated dimerization strength for ErbBs family can be related to their oncogenic ability.
Abstract: Association of transmembrane (TM) helices taking place in the cell membrane has an important contribution to the biological function of bitopic proteins, among which receptor tyrosine kinases represent a typical example and a potent target for medical applications. Since this process depends on a complex interplay of different factors (primary structures of TM domains and juxtamembrane regions, composition and phase of the local membrane environment, etc.), it is still far from being fully understood. Here, we present a computational modeling framework, which we have applied to systematically analyze dimerization of 18 TM helical homo- and heterodimers of different bitopic proteins, including the family of epidermal growth factor receptors (ErbBs). For this purpose, we have developed a novel surface-based modeling approach, which not only is able to predict particular conformations of TM dimers in good agreement with experiment but also provides screening of their conformational heterogeneity. Using all-atom molecular dynamics simulations of several of the predicted dimers in different model membranes, we have elucidated a putative role of the environment in selection of particular conformations. Simulation results clearly show that each particular bilayer preferentially stabilizes one of possible dimer conformations, and that the energy gain depends on the interplay between structural properties of the protein and the membrane. Moreover, the character of protein-driven perturbations of the bilayer is reflected in the contribution of a particular membrane to the free energy gain. We have found that the approximated dimerization strength for ErbBs family can be related to their oncogenic ability.

60 citations

Journal ArticleDOI
TL;DR: In this article, the formation of defects in bcc Mo lattice via atomistic simulation with an interatomic potential developed using the force-matching ab initio based approach is studied.
Abstract: The formation of defects in bcc Mo lattice as a result of 50-keV Xe bombardment is studied via atomistic simulation with an interatomic potential developed using the force-matching ab initio based approach. The defect evolution in the cascade is described. Diffusion and interaction of interstitials and vacancies are analyzed. Only small interstitial atom clusters form directly in the cascade. Larger clusters grow only via aggregation at temperatures up to 2000 K. Stable forms of clusters demonstrate one-dimensional diffusion with a very high diffusion coefficient and escape quickly to the open surface. Point vacancies have much lower diffusivity and do not aggregate. The possibility of a large prismatic vacancy loop formation near the impact surface as a result of fast recrystallization is revealed. The mobility of the vacancy dislocation loop segments is high, however, the motion of the entire loops is strongly hindered by neighbor point defects. This paper explains the existence of the large prismatic vacancy loops and the absence of the interstitial loops in the recent experiments with ion irradiation of Mo foils.

60 citations


Authors

Showing all 8797 results

NameH-indexPapersCitations
Dominique Pallin132113188668
Vladimir N. Uversky13195975342
Lee Sawyer130134088419
Dmitry Novikov12734883093
Simon Lin12675469084
Zeno Dixon Greenwood126100277347
Christian Ohm12687369771
Alexey Myagkov10958645630
Stanislav Babak10730866226
Alexander Zaitsev10345348690
Vladimir Popov102103050257
Alexander Vinogradov9641040879
Gueorgui Chelkov9332141816
Igor Pshenichnov8336222699
Vladimir Popov8337026390
Network Information
Related Institutions (5)
Moscow State University
123.3K papers, 1.7M citations

94% related

Russian Academy of Sciences
417.5K papers, 4.5M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

86% related

University of Paris-Sud
52.7K papers, 2.1M citations

86% related

Royal Institute of Technology
68.4K papers, 1.9M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202368
2022238
20211,774
20202,246
20192,112
20181,902