scispace - formally typeset
Search or ask a question
Institution

Moscow Institute of Physics and Technology

EducationDolgoprudnyy, Russia
About: Moscow Institute of Physics and Technology is a education organization based out in Dolgoprudnyy, Russia. It is known for research contribution in the topics: Laser & Large Hadron Collider. The organization has 8594 authors who have published 16968 publications receiving 246551 citations. The organization is also known as: MIPT & Moscow Institute of Physics and Technology (State University).


Papers
More filters
Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Federico Ambrogi  +2285 moreInstitutions (170)
TL;DR: In this article, the performance of these techniques for jet and missing transverse momentum reconstruction, as well as muon isolation is surveyed. But the authors focus on the identification of pileup jets, the jet energy, mass, and angular resolution, missing transversal momentum resolution, and Muon isolation when using pileup per particle identification.
Abstract: With increasing instantaneous luminosity at the LHC come additional reconstruction challenges. At high luminosity, many collisions occur simultaneously within one proton-proton bunch crossing. The isolation of an interesting collision from the additional "pileup" collisions is needed for effective physics performance. In the CMS Collaboration, several techniques capable of mitigating the impact of these pileup collisions have been developed. Such methods include charged-hadron subtraction, pileup jet identification, isospin-based neutral particle "δβ" correction, and, most recently, pileup per particle identification. This paper surveys the performance of these techniques for jet and missing transverse momentum reconstruction, as well as muon isolation. The analysis makes use of data corresponding to 35.9 fb−1 collected with the CMS experiment in 2016 at a center-of-mass energy of 13 TeV. The performance of each algorithm is discussed for up to 70 simultaneous collisions per bunch crossing. Significant improvements are found in the identification of pileup jets, the jet energy, mass, and angular resolution, missing transverse momentum resolution, and muon isolation when using pileup per particle identification.

60 citations

Journal ArticleDOI
TL;DR: In this paper, a 0-D dynamic mathematical model for a single Vanadium Redox Flow Battery (VRFB) cell is proposed based on the conservation principles of charge and mass transfer focusing on the precise simulation of crossover with diffusion, migration and convection.

60 citations

Journal ArticleDOI
TL;DR: It is shown that CR increased the number of dividing cells in the dentate gyrus of female mice and increased proliferative activity of stem and progenitor cells did not result in a significant increase in thenumber of doublecortin‐positive newborn neurons.
Abstract: Production of new neurons from stem cells is important for cognitive function, and the reduction of neurogenesis in the aging brain may contribute to the accumulation of age-related cognitive deficits. Restriction of calorie intake and prolonged treatment with rapamycin have been shown to extend the lifespan of animals and delay the onset of the age-related decline in tissue and organ function. Using a reporter line in which neural stem and progenitor cells are marked by the expression of green fluorescent protein (GFP), we examined the effect of prolonged exposure to calorie restriction (CR) or rapamycin on hippocampal neural stem and progenitor cell proliferation in aging mice. We showed that CR increased the number of dividing cells in the dentate gyrus of female mice. The majority of these cells corresponded to nestin-GFP-expressing neural stem or progenitor cells; however, this increased proliferative activity of stem and progenitor cells did not result in a significant increase in the number of doublecortin-positive newborn neurons. Our results suggest that restricted calorie intake may increase the number of divisions that neural stem and progenitor cells undergo in the aging brain of females.

60 citations

Journal ArticleDOI
TL;DR: In this article, a charge quantum interference device (CQI device) is proposed for a continuous superconducting system without dielectric barriers, which is a manifestation of the Aharonov-Casher effect.
Abstract: The demonstration of coherent quantum phase slips (CQPS) in disordered superconductors has opened up a new route towards exploring the fundamental charge–phase duality in superconductors, with the promise of devices with new functionalities and a robust quantum current standard based on CQPS. Here we demonstrate a device that integrates several CQPS junctions: the charge quantum interference device. The charge quantum interference device becomes the dual of the well-known superconducting quantum interference device, and is a manifestation of the Aharonov–Casher effect in a continuous superconducting system devoid of dielectric barriers.

59 citations

Journal ArticleDOI
TL;DR: In this article, the phase separation diagram of a two-band Hubbard model for strongly correlated charge carriers is shown to occur in a particular range in the vicinity of the topological Lifshitz transition, where the Fermi energy crosses the bottom of the narrow band and a new sheet of the surface related to the charge carriers of the second band comes into play.
Abstract: The arrested nanoscale phase separation in a two-band Hubbard model for strongly correlated charge carriers is shown to occur in a particular range in the vicinity of the topological Lifshitz transition, where the Fermi energy crosses the bottom of the narrow band and a new sheet of the Fermi surface related to the charge carriers of the second band comes into play. We determine the phase separation diagram of this two-band Hubbard model as a function of two variables, the charge carrier density and the energy shift between the chemical potential and the bottom of the second band. In this phase diagram, we first determine a line of quantum critical points for the Lifshitz transition and find criteria for the electronic phase separation resulting in an inhomogeneous charge distribution. Finally, we identify the critical point in the presence of a variable long-range Coulomb interaction where the scale invariance of the coexisting phases with different charge densities appears. We argue that this point is relevant for the regime of scale invariance of the nanoscale phase separation in cuprates like it was first observed in La2CuO.

59 citations


Authors

Showing all 8797 results

NameH-indexPapersCitations
Dominique Pallin132113188668
Vladimir N. Uversky13195975342
Lee Sawyer130134088419
Dmitry Novikov12734883093
Simon Lin12675469084
Zeno Dixon Greenwood126100277347
Christian Ohm12687369771
Alexey Myagkov10958645630
Stanislav Babak10730866226
Alexander Zaitsev10345348690
Vladimir Popov102103050257
Alexander Vinogradov9641040879
Gueorgui Chelkov9332141816
Igor Pshenichnov8336222699
Vladimir Popov8337026390
Network Information
Related Institutions (5)
Moscow State University
123.3K papers, 1.7M citations

94% related

Russian Academy of Sciences
417.5K papers, 4.5M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

86% related

University of Paris-Sud
52.7K papers, 2.1M citations

86% related

Royal Institute of Technology
68.4K papers, 1.9M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202368
2022238
20211,774
20202,246
20192,112
20181,902