scispace - formally typeset
Search or ask a question
Institution

Moscow Institute of Physics and Technology

EducationDolgoprudnyy, Russia
About: Moscow Institute of Physics and Technology is a education organization based out in Dolgoprudnyy, Russia. It is known for research contribution in the topics: Laser & Plasma. The organization has 8594 authors who have published 16968 publications receiving 246551 citations. The organization is also known as: MIPT & Moscow Institute of Physics and Technology (State University).


Papers
More filters
Journal ArticleDOI
Georges Aad1, Alexander Kupco2, Peter Davison2, Samuel Webb2  +2874 moreInstitutions (82)
TL;DR: In this paper, a search for decays of massive particles to fully hadronic final states using 20.3 fb(-1) of data collected by the ATLAS detector in root s = 8 TeV proton-proton collisions at the LHC is presented.
Abstract: Results of a search for decays of massive particles to fully hadronic final states are presented. This search uses 20.3 fb(-1) of data collected by the ATLAS detector in root s = 8 TeV proton-proton collisions at the LHC. Signatures based on high jet multiplicities without requirements on the missing transverse momentum are used to search for R-parity-violating supersymmetric gluino pair production with subsequent decays to quarks. The analysis is performed using a requirement on the number of jets, in combination with separate requirements on the number of b-tagged jets, as well as a topological observable formed from the scalar sum of the mass values of large-radius jets in the event. Results are interpreted in the context of all possible branching ratios of direct gluino decays to various quark flavors. No significant deviation is observed from the expected Standard Model backgrounds estimated using jet counting as well as data-driven templates of the total-jet-mass spectra. Gluino pair decays to ten or more quarks via intermediate neutralinos are excluded for a gluino with mass m((g) over tilde) 10) = 500 GeV. Direct gluino decays to six quarks are excluded for m((g) over tilde) < 917 GeV for light-flavor final states, and results for various flavor hypotheses are presented.

59 citations

Posted Content
TL;DR: A non-accelerated derivative-free algorithm with a complexity bound similar to the stochastic-gradient-based algorithm, that is, the authors' bound does not have any dimension-dependent factor except logarithmic.
Abstract: We consider an unconstrained problem of minimizing a smooth convex function which is only available through noisy observations of its values, the noise consisting of two parts. Similar to stochastic optimization problems, the first part is of stochastic nature. The second part is additive noise of unknown nature, but bounded in absolute value. In the two-point feedback setting, i.e. when pairs of function values are available, we propose an accelerated derivative-free algorithm together with its complexity analysis. The complexity bound of our derivative-free algorithm is only by a factor of $\sqrt{n}$ larger than the bound for accelerated gradient-based algorithms, where $n$ is the dimension of the decision variable. We also propose a non-accelerated derivative-free algorithm with a complexity bound similar to the stochastic-gradient-based algorithm, that is, our bound does not have any dimension-dependent factor except logarithmic. Notably, if the difference between the starting point and the solution is a sparse vector, for both our algorithms, we obtain a better complexity bound if the algorithm uses an $1$-norm proximal setup, rather than the Euclidean proximal setup, which is a standard choice for unconstrained problems

59 citations

Journal ArticleDOI
TL;DR: The observation of a frequency shift and splitting of the ESR mode of the low-dimensional S=1/2 frustrated antiferromagnet Cs2CuCl4 in the spin-correlated state above the ordering temperature 0.62 K is reported.
Abstract: We report the observation of a frequency shift and splitting of the electron spin resonance (ESR) mode of the low-dimensional S=1/2 frustrated antiferromagnet Cs2CuCl4 in the spin-correlated state above the ordering temperature 0.62 K. The shift and splitting exhibit strong anisotropy with respect to the direction of the applied magnetic field and do not vanish in a zero field. The low-temperature evolution of the ESR is a result of the modification of the one-dimensional spinon continuum by the uniform Dzyaloshinskii-Moriya interaction within the spin chains.

59 citations

Journal ArticleDOI
TL;DR: A universal approach is described for evaluating main characteristics of the resonant particle dynamics: probability of trapping into resonance, energy change due to scattering and trapping, and stability of trapped motion and evolution of particle ensemble in systems with trapping.

59 citations

Journal ArticleDOI
TL;DR: An algebraic methodology for defining new metrics over two-dimensional signal spaces is presented and a new family of perfect codes over Gaussian integers will be defined and characterized by providing a solution to the perfect t-dominating set problem over the circulant graphs presented.
Abstract: An algebraic methodology for defining new metrics over two-dimensional signal spaces is presented in this work. We have mainly considered quadrature amplitude modulation (QAM) constellations which have previously been modeled by quotient rings of Gaussian integers. The metric over these constellations, based on the distance concept in circulant graphs, is one of the main contributions of this work. A detailed analysis of some degree-four circulant graphs has allowed us to detail the weight distribution for these signal spaces. A new family of perfect codes over Gaussian integers will be defined and characterized by providing a solution to the perfect t-dominating set problem over the circulant graphs presented. Finally, we will show how this new metric can be extended to other signal sets by considering hexagonal constellations and circulant graphs of degree six.

59 citations


Authors

Showing all 8797 results

NameH-indexPapersCitations
Dominique Pallin132113188668
Vladimir N. Uversky13195975342
Lee Sawyer130134088419
Dmitry Novikov12734883093
Simon Lin12675469084
Zeno Dixon Greenwood126100277347
Christian Ohm12687369771
Alexey Myagkov10958645630
Stanislav Babak10730866226
Alexander Zaitsev10345348690
Vladimir Popov102103050257
Alexander Vinogradov9641040879
Gueorgui Chelkov9332141816
Igor Pshenichnov8336222699
Vladimir Popov8337026390
Network Information
Related Institutions (5)
Moscow State University
123.3K papers, 1.7M citations

94% related

Russian Academy of Sciences
417.5K papers, 4.5M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

86% related

University of Paris-Sud
52.7K papers, 2.1M citations

86% related

Royal Institute of Technology
68.4K papers, 1.9M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202368
2022238
20211,774
20202,247
20192,112
20181,902