scispace - formally typeset
Search or ask a question
Institution

Moscow Institute of Physics and Technology

EducationDolgoprudnyy, Russia
About: Moscow Institute of Physics and Technology is a education organization based out in Dolgoprudnyy, Russia. It is known for research contribution in the topics: Laser & Large Hadron Collider. The organization has 8594 authors who have published 16968 publications receiving 246551 citations. The organization is also known as: MIPT & Moscow Institute of Physics and Technology (State University).


Papers
More filters
Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2875 moreInstitutions (201)
TL;DR: In this paper, a search for the b (b) over bar decay of the Standard Model Higgs boson is performed with the ATLAS experiment using the full dataset recorded at the LHC in Run 1.
Abstract: A search for the b (b) over bar decay of the Standard Model Higgs boson is performed with the ATLAS experiment using the full dataset recorded at the LHC in Run 1. The integrated luminosities used are 4.7 and 20.3 fb(-1) from pp collisions at root s = 7 and 8 TeV, respectively. The processes considered are associated (WIZ)H production, where W -> e nu/mu nu, Z -> ee/mu mu, and Z -> nu nu. The observed (expected) deviation from the backgroundonly hypothesis corresponds to a significance of 1.4 (2.6) standard deviations and the ratio of the measured signal yield to the Standard Model expectation is found to be mu = 0.52 +/- 0.32 (stat.) +/- 0.24 (syst.) for a Higgs boson mass of 125.36 GeV. The analysis procedure is validated by a measurement of the yield of (W/Z)Z production with Z -> b (b) over bar in the same final states as for the Higgs boson search, from which the ratio of the observed signal yield to the Standard Model expectation is found to be 0.74 +/- 0.09 (stat.) +/- 0.14 (syst.).

164 citations

Journal ArticleDOI
TL;DR: In this article, the energy and angular distributions of ejected electrons at barrier-suppression and tunneling ionization of complex atoms and atomic ions by low-frequency strong electromagnetic radiation were analyzed.
Abstract: Analytical expressions are obtained for energy and angular distributions of ejected electrons at the barrier-suppression and tunneling ionization of complex atoms and atomic ions by low-frequency strong electromagnetic radiation. The results reduce to previously known expressions in the case of the ground state of the hydrogen atom. Both linear and circular polarizations of the electromagnetic field are considered. The ionization rates are found by integration over angles and energies of the ejected electron in the case of barrier-suppression ionization of complex atoms and atomic ions. The barrier-suppression results reduce correctly to the tunneling results of the Ammosov–Delone–Krainov approach in the limit of weak fields compared with the barrier-suppression fields.

163 citations

Journal ArticleDOI
Rathin Adhikari1, Matteo Agostini, N. Anh Ky2, N. Anh Ky3, T. Araki4, Maria Archidiacono5, M. Bahr6, J. Baur7, J. Behrens8, Fedor Bezrukov9, P. S. Bhupal Dev10, Debasish Borah11, Alexey Boyarsky12, A. de Gouvea13, C. A. de S. Pires14, H. J. de Vega15, Alex G. Dias16, P. Di Bari17, Z. Djurcic18, Kai Dolde19, H. Dorrer20, M. Durero7, O. Dragoun, Marco Drewes21, Guido Drexlin19, Ch. E. Düllmann20, Klaus Eberhardt20, Sergey Eliseev22, Christian Enss23, Nick Evans, A. Faessler24, Pavel Filianin22, V. Fischer7, Andreas Fleischmann23, Joseph A. Formaggio25, Jeroen Franse12, F.M. Fraenkle19, Carlos S. Frenk26, George M. Fuller27, L. Gastaldo23, Antonella Garzilli12, Carlo Giunti, Ferenc Glück19, Maury Goodman18, M. C. Gonzalez-Garcia28, Dmitry Gorbunov29, Dmitry Gorbunov30, Jan Hamann31, Volker Hannen8, Steen Hannestad5, Steen Honoré Hansen32, C. Hassel23, Julian Heeck33, F. Hofmann22, T. Houdy7, T. Houdy34, A. Huber19, Dmytro Iakubovskyi35, Aldo Ianni36, Alejandro Ibarra21, Richard Jacobsson37, Tesla E. Jeltema38, Josef Jochum24, Sebastian Kempf23, T. Kieck20, M. Korzeczek7, M. Korzeczek19, V. N. Kornoukhov39, Tobias Lachenmaier24, Mikko Laine40, Paul Langacker41, Thierry Lasserre, J. Lesgourgues42, D. Lhuillier7, Yufeng Li43, W. Liao44, A.W. Long45, Michele Maltoni46, Gianpiero Mangano, Nick E. Mavromatos47, Nicola Menci48, Alexander Merle22, Susanne Mertens49, Susanne Mertens19, Alessandro Mirizzi50, Alessandro Mirizzi51, Benjamin Monreal6, A. A. Nozik29, A. A. Nozik30, Andrii Neronov52, V. Niro46, Yu. N. Novikov53, L. Oberauer21, Ernst W. Otten20, Nathalie Palanque-Delabrouille7, Marco Pallavicini54, V. S. Pantuev29, Emmanouil Papastergis55, Stephen J. Parke56, Silvia Pascoli26, Sergio Pastor57, Amol V. Patwardhan27, Apostolos Pilaftsis10, D. C. Radford58, P. C.-O. Ranitzsch8, O. Rest8, Dean J. Robinson59, P. S. Rodrigues da Silva14, Oleg Ruchayskiy60, Oleg Ruchayskiy35, Norma G. Sanchez61, Manami Sasaki24, Ninetta Saviano20, Ninetta Saviano26, Aurel Schneider62, F. Schneider20, T. Schwetz19, S. Schönert21, S. Scholl24, Francesco Shankar17, Robert Shrock28, N. Steinbrink8, Louis E. Strigari63, F. Suekane64, B. Suerfu65, R. Takahashi66, N. Thi Hong Van2, Igor Tkachev29, Maximilian Totzauer22, Y. Tsai67, Christopher George Tully65, Kathrin Valerius19, José W. F. Valle57, D. Vénos, Matteo Viel48, M. Vivier7, Mei-Yu Wang63, Ch. Weinheimer8, Klaus Wendt20, Lindley Winslow25, Joachim Wolf19, Michael Wurm20, Z. Xing43, Shun Zhou43, Kai Zuber68 
Jamia Millia Islamia1, Vietnam Academy of Science and Technology2, Hanoi University of Science3, Saitama University4, Aarhus University5, University of California, Santa Barbara6, Commissariat à l'énergie atomique et aux énergies alternatives7, University of Münster8, University of Connecticut9, University of Manchester10, Indian Institute of Technology Guwahati11, Leiden University12, Northwestern University13, Federal University of Paraíba14, Centre national de la recherche scientifique15, Universidade Federal do ABC16, University of Southampton17, Argonne National Laboratory18, Karlsruhe Institute of Technology19, University of Mainz20, Technische Universität München21, Max Planck Society22, Heidelberg University23, University of Tübingen24, Massachusetts Institute of Technology25, Durham University26, University of California, San Diego27, C. N. Yang Institute for Theoretical Physics28, Russian Academy of Sciences29, Moscow Institute of Physics and Technology30, University of Sydney31, University of Copenhagen32, Université libre de Bruxelles33, Paris Diderot University34, Niels Bohr Institute35, Estácio S.A.36, CERN37, University of California, Santa Cruz38, Institute on Taxation and Economic Policy39, University of Bern40, Institute for Advanced Study41, RWTH Aachen University42, Chinese Academy of Sciences43, East China University of Science and Technology44, University of Chicago45, Autonomous University of Madrid46, King's College London47, INAF48, Lawrence Berkeley National Laboratory49, University of Bari50, Istituto Nazionale di Fisica Nucleare51, University of Geneva52, Petersburg Nuclear Physics Institute53, University of Genoa54, Kapteyn Astronomical Institute55, Fermilab56, Spanish National Research Council57, Oak Ridge National Laboratory58, University of California, Berkeley59, École Polytechnique Fédérale de Lausanne60, University of Paris61, University of Zurich62, Mitchell Institute63, Tohoku University64, Princeton University65, Shimane University66, University of Maryland, College Park67, Dresden University of Technology68
TL;DR: A comprehensive review of keV-scale neutrino Dark Matter can be found in this paper, where the role of active neutrinos in particle physics, astrophysics, and cosmology is reviewed.
Abstract: We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.

163 citations

Journal ArticleDOI
Paolo Soffitta1, Xavier Barcons2, Ronaldo Bellazzini, João Braga3, Enrico Costa1, George W. Fraser4, Szymon Gburek5, Juhani Huovelin6, Giorgio Matt7, Mark Pearce8, Mark Pearce9, Juri Poutanen10, Victor Reglero11, Andrea Santangelo12, R. A. Sunyaev13, Gianpiero Tagliaferri1, Martin C. Weisskopf14, Roberto Aloisio1, Elena Amato1, Primo Attina15, Magnus Axelsson8, Magnus Axelsson9, Luca Baldini16, Stefano Basso1, Stefano Bianchi7, Pasquale Blasi1, Johan Bregeon, Alessandro Brez, Niccolò Bucciantini1, Luciano Burderi17, Vadim Burwitz13, Piergiorgio Casella1, Eugene Churazov13, Marta Civitani1, Stefano Covino1, Rui M. Curado da Silva, Giancarlo Cusumano1, Mauro Dadina1, Flavio D'Amico3, Alessandra De Rosa1, Sergio Di Cosimo1, Giuseppe Di Persio1, Tiziana Di Salvo18, Michal Dovciak19, Ronald F. Elsner14, C. J. Eyles20, Andrew C. Fabian21, Sergio Fabiani1, Hua Feng22, Salvatore Giarrusso1, R. Goosmann, Paola Grandi1, Nicolas Grosso, G. L. Israel1, Miranda Jackson8, Miranda Jackson9, Philip Kaaret23, Vladimir Karas19, Michael Kuss, Dong Lai24, Giovanni La Rosa1, Josefin Larsson8, Josefin Larsson9, Stefan Larsson9, Stefan Larsson8, Luca Latronico, Antonio Maggio1, J.M. Maia, Frédéric Marin, Marco Maria Massai16, Teresa Mineo1, Massimo Minuti, E. Moretti8, E. Moretti9, Fabio Muleri1, Stephen L. O'Dell14, Giovanni Pareschi1, Giovanni Peres18, Melissa Pesce, Pierre-Olivier Petrucci25, Michele Pinchera, Delphine Porquet, Brian D. Ramsey14, Nanda Rea2, Fabio Reale18, J. M. Rodrigo11, Agata Różańska5, Alda Rubini1, Pawel Rudawy26, Felix Ryde8, Felix Ryde9, M. Salvati1, Valdivino Alexandre de Santiago3, Sergey Sazonov27, Sergey Sazonov28, Carmelo Sgrò, Eric H. Silver29, Gloria Spandre, Daniele Spiga1, Luigi Stella1, Toru Tamagawa, Francesco Tamborra7, Fabrizio Tavecchio1, T.H.V.T. Dias, Matthew van Adelsberg30, Kinwah Wu31, Silvia Zane31 
TL;DR: The X-ray Imaging Polarimetry Explorer (XIPE) as mentioned in this paper was proposed in 2012 to the first ESA call for a small mission with a launch in 2017, but the proposal was, unfortunately, not selected.
Abstract: X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 % in the 2–10 keV band in 105 s for pointed observations, and 0.6 % for an X10 class solar flare in the 15–35 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14.7 arcmin × 14.7 arcmin. The spectral resolution is 20 % at 6 keV and the time resolution is 8 μs. The imaging capabilities of the JET-X optics and of the GPD have been demonstrated by a recent calibration campaign at PANTER X-ray test facility of the Max-Planck-Institut fur extraterrestrische Physik (MPE, Germany). XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil). The data policy is organized with a Core Program that comprises three months of Science Verification Phase and 25 % of net observing time in the following 2 years. A competitive Guest Observer program covers the remaining 75 % of the net observing time.

162 citations

Journal ArticleDOI
TL;DR: Analysis of key molecular descriptors and chemical statistical features demonstrated that the molecules generated by ATNC elicited better druglikeness properties, indicating that ATNC is an effective method for producing hit compounds.
Abstract: In this article, we propose the deep neural network Adversarial Threshold Neural Computer (ATNC). The ATNC model is intended for the de novo design of novel small-molecule organic structures. The model is based on generative adversarial network architecture and reinforcement learning. ATNC uses a Differentiable Neural Computer as a generator and has a new specific block, called adversarial threshold (AT). AT acts as a filter between the agent (generator) and the environment (discriminator + objective reward functions). Furthermore, to generate more diverse molecules we introduce a new objective reward function named Internal Diversity Clustering (IDC). In this work, ATNC is tested and compared with the ORGANIC model. Both models were trained on the SMILES string representation of the molecules, using four objective functions (internal similarity, Muegge druglikeness filter, presence or absence of sp3-rich fragments, and IDC). The SMILES representations of 15K druglike molecules from the ChemDiv collection...

162 citations


Authors

Showing all 8797 results

NameH-indexPapersCitations
Dominique Pallin132113188668
Vladimir N. Uversky13195975342
Lee Sawyer130134088419
Dmitry Novikov12734883093
Simon Lin12675469084
Zeno Dixon Greenwood126100277347
Christian Ohm12687369771
Alexey Myagkov10958645630
Stanislav Babak10730866226
Alexander Zaitsev10345348690
Vladimir Popov102103050257
Alexander Vinogradov9641040879
Gueorgui Chelkov9332141816
Igor Pshenichnov8336222699
Vladimir Popov8337026390
Network Information
Related Institutions (5)
Moscow State University
123.3K papers, 1.7M citations

94% related

Russian Academy of Sciences
417.5K papers, 4.5M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

86% related

University of Paris-Sud
52.7K papers, 2.1M citations

86% related

Royal Institute of Technology
68.4K papers, 1.9M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202368
2022238
20211,774
20202,246
20192,112
20181,902