scispace - formally typeset
Search or ask a question
Institution

Moscow Institute of Physics and Technology

EducationDolgoprudnyy, Russia
About: Moscow Institute of Physics and Technology is a education organization based out in Dolgoprudnyy, Russia. It is known for research contribution in the topics: Laser & Plasma. The organization has 8594 authors who have published 16968 publications receiving 246551 citations. The organization is also known as: MIPT & Moscow Institute of Physics and Technology (State University).


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the amplitude of a Schrodinger's cat (SC) state is increased using a homodyne measurement with a success probability of ∼ 0.2 by bringing the initial SC states into interference on a beamsplitter and a subsequent heralding quadrature measurement in one of the output channels.
Abstract: Superpositions of macroscopically distinct quantum states, introduced in Schrodinger's famous Gedankenexperiment, are an epitome of quantum ‘strangeness’ and a natural tool for determining the validity limits of quantum physics. The optical incarnation of Schrodinger's cat (SC)—the superposition of two opposite-amplitude coherent states—is also the backbone of continuous-variable quantum information processing. However, the existing preparation methods limit the amplitudes of the component coherent states, which curtails the state's usefulness for fundamental and practical applications. Here, we convert a pair of negative squeezed SC states of amplitude 1.15 to a single positive SC state of amplitude 1.85 with a success probability of ∼0.2. The protocol consists in bringing the initial states into interference on a beamsplitter and a subsequent heralding quadrature measurement in one of the output channels. Our technique can be realized iteratively, so arbitrarily high amplitudes can, in principle, be reached. The amplitude of a Schrodinger's cat (SC) state — superposed coherent state — is increased using a homodyne measurement. A pair of negative SC states with amplitude of 1.15 is probabilistically converted to a single positive SC state with amplitude of 1.85.

143 citations

Journal ArticleDOI
R. Glattauer1, C. Schwanda1, A. Abdesselam2, I. Adachi  +177 moreInstitutions (58)
TL;DR: In this article, the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element vertical bar V-cb vertical bar was determined based on 711 fb(-1) of e(+)e(-) -> Upsilon(4S) data recorded by the Belle detector and containing 772 x 10(6) B (B) over bar pairs.
Abstract: We present a determination of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element vertical bar V-cb vertical bar using the decay B -> Dl nu(l) (l = e,mu) based on 711 fb(-1) of e(+)e(-) -> Upsilon(4S) data recorded by the Belle detector and containing 772 x 10(6) B (B) over bar pairs. One B meson in the event is fully reconstructed in a hadronic decay mode, while the other, on the signal side, is partially reconstructed from a charged lepton and either a D+ or D-0 meson in a total of 23 hadronic decay modes. The isospin-averaged branching fraction of the decay B -> Dl nu(l) is found to be B(B-0 -> D(-)l(vertical bar)nu(l)) = (2.31 +/- 0.03(stat) +/- 0.11(syst))%. Analyzing the differential decay rate as a function of the hadronic recoil with the parametrization of Caprini, Lellouch, and Neubert and using the form-factor prediction G(1) = 1.0541 +/- 0.0083 calculated by FNAL/MILC, we obtain eta(EW)vertical bar V-cb vertical bar = (40.12 +/- 1.34) x 10(-3), where eta(EW) is the electroweak correction factor. Alternatively, assuming the model-independent form-factor parametrization of Boyd, Grinstein, and Lebed and using lattice QCD data from the FNAL/MILC and HPQCD collaborations, we find eta(EW)vertical bar V-cb vertical bar = (41.10 +/- 1.14) x 10(-3).

142 citations

Journal ArticleDOI
TL;DR: In this paper, an electrically-driven soliton microcomb was demonstrated by coupling a III-V-material-based (indium phosphide) multiple-longitudinal-mode laser diode chip to a high-Q silicon nitride microresonator fabricated using the photonic Damascene process.
Abstract: Microcombs provide a path to broad-bandwidth integrated frequency combs with low power consumption, which are compatible with wafer-scale fabrication. Yet, electrically-driven, photonic chip-based microcombs are inhibited by the required high threshold power and the frequency agility of the laser for soliton initiation. Here we demonstrate an electrically-driven soliton microcomb by coupling a III–V-material-based (indium phosphide) multiple-longitudinal-mode laser diode chip to a high-Q silicon nitride microresonator fabricated using the photonic Damascene process. The laser diode is self-injection locked to the microresonator, which is accompanied by the narrowing of the laser linewidth, and the simultaneous formation of dissipative Kerr solitons. By tuning the laser diode current, we observe transitions from modulation instability, breather solitons, to single-soliton states. The system operating at an electronically-detectable sub-100-GHz mode spacing requires less than 1 Watt of electrical power, can fit in a volume of ca. 1 cm3, and does not require on-chip filters and heaters, thus simplifying the integrated microcomb. Chip-based frequency combs promise many applications, but full integration requires the electrical pump source and the microresonator to be on the same chip. Here, the authors show such integration of a microcomb with < 100 GHz mode spacing without additional filtering cavities or on-chip heaters.

141 citations

Journal ArticleDOI
TL;DR: The majority of the genes as well as genetic and epigenetic mechanisms that are involved in regulation of longevity are highly interconnected and related to stress response.
Abstract: Evolutionary theories of aging predict the existence of certain genes that provide selective advantage early in life with adverse effect on lifespan later in life (antagonistic pleiotropy theory) or longevity insurance genes (disposable soma theory). Indeed, the study of human and animal genetics is gradually identifying new genes that increase lifespan when overexpressed or mutated: gerontogenes. Furthermore, genetic and epigenetic mechanisms are being identified that have a positive effect on longevity. The gerontogenes are classified as lifespan regulators, mediators, effectors, housekeeping genes, genes involved in mitochondrial function, and genes regulating cellular senescence and apoptosis. In this review we demonstrate that the majority of the genes as well as genetic and epigenetic mechanisms that are involved in regulation of longevity are highly interconnected and related to stress response.

140 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2917 moreInstitutions (211)
TL;DR: In this article, the results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1 fb(-1) of proton-proton collision data at = 8 TeV recorded with the ATLAS detector at the LHC are reported.
Abstract: The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1 fb(-1) of proton-proton collision data at = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via or , where denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of . For a branching fraction of 100%, top squark masses in the range 270-645 GeV are excluded for masses below 30 GeV. For a branching fraction of 50% to either or , and assuming the mass to be twice the mass, top squark masses in the range 250-550 GeV are excluded for masses below 60 GeV.

140 citations


Authors

Showing all 8797 results

NameH-indexPapersCitations
Dominique Pallin132113188668
Vladimir N. Uversky13195975342
Lee Sawyer130134088419
Dmitry Novikov12734883093
Simon Lin12675469084
Zeno Dixon Greenwood126100277347
Christian Ohm12687369771
Alexey Myagkov10958645630
Stanislav Babak10730866226
Alexander Zaitsev10345348690
Vladimir Popov102103050257
Alexander Vinogradov9641040879
Gueorgui Chelkov9332141816
Igor Pshenichnov8336222699
Vladimir Popov8337026390
Network Information
Related Institutions (5)
Moscow State University
123.3K papers, 1.7M citations

94% related

Russian Academy of Sciences
417.5K papers, 4.5M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

86% related

University of Paris-Sud
52.7K papers, 2.1M citations

86% related

Royal Institute of Technology
68.4K papers, 1.9M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202368
2022238
20211,774
20202,247
20192,112
20181,902