scispace - formally typeset
Search or ask a question
Institution

Moscow Institute of Physics and Technology

EducationDolgoprudnyy, Russia
About: Moscow Institute of Physics and Technology is a education organization based out in Dolgoprudnyy, Russia. It is known for research contribution in the topics: Laser & Plasma. The organization has 8594 authors who have published 16968 publications receiving 246551 citations. The organization is also known as: MIPT & Moscow Institute of Physics and Technology (State University).


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review is devoted to recent developments in blood flow modelling, where blood is considered as a heterogeneous fluid composed of plasma and blood cells, and the main ideas of this approach and some examples of its application are discussed.
Abstract: This review is devoted to recent developments in blood flow modelling. It begins with the discussion of blood rheology and its non-Newtonian properties. After that we will present some modelling methods where blood is considered as a heterogeneous fluid composed of plasma and blood cells. Namely, we will describe the method of Dissipative Particle Dynamics and will present some results of blood flow modelling. The last part of this paper deals with one-dimensional global models of blood circulation. We will explain the main ideas of this approach and will present some examples of its application.

140 citations

Journal ArticleDOI
TL;DR: Experimental outcomes suggest that cfDNA retains characteristics previously noted in genome-wide analysis of chromatin structure, in particular, in MNase-seq assays.
Abstract: The assessment of cell-free circulating DNA fragments, also known as a "liquid biopsy" of the patient's plasma, is an important source for the discovery and subsequent non-invasive monitoring of cancer and other pathological conditions. Although the nucleosome-guided fragmentation patterns of cell-free DNA (cfDNA) have not yet been studied in detail, non-random representation of cfDNA sequencies may reflect chromatin features in the tissue of origin at gene-regulation level. In this study, we investigated the association between epigenetic landscapes of human tissues evident in the patterns of cfDNA in plasma by deep sequencing of human cfDNA samples. We have demonstrated that baseline characteristics of cfDNA fragmentation pattern are in concordance with the ones corresponding to cell lines-derived. To identify the loci differentially represented in cfDNA fragment, we mapped the transcription start sites within the sequenced cfDNA fragments and tested for association of these genomic coordinates with the relative strength and the patterns of gene expressions. Preselected sets of house-keeping and tissue specific genes were used as models for actively expressed and silenced genes. Developed measure of gene regulation was able to differentiate these two sets based on sequencing coverage near gene transcription start site. Experimental outcomes suggest that cfDNA retains characteristics previously noted in genome-wide analysis of chromatin structure, in particular, in MNase-seq assays. Thus far the analysis of the DNA fragmentation pattern may aid further developing of cfDNA based biomarkers for a variety of human conditions.

139 citations

Journal ArticleDOI
TL;DR: The goal is to present recent findings concerning novel inhibitory proteins or the regulation of the actin branched junction and place these in the context of what was previously known to provide a global overview of how the Arp2/3 complex is regulated in human cells.
Abstract: The Arp2/3 complex is an evolutionary conserved molecular machine that generates branched actin networks. When activated, the Arp2/3 complex contributes the actin branched junction and thus cross-links the polymerizing actin filaments in a network that exerts a pushing force. The different activators initiate branched actin networks at the cytosolic surface of different cellular membranes to promote their protrusion, movement, or scission in cell migration and membrane traffic. Here we review the structure, function, and regulation of all the direct regulators of the Arp2/3 complex that induce or inhibit the initiation of a branched actin network and that controls the stability of its branched junctions. Our goal is to present recent findings concerning novel inhibitory proteins or the regulation of the actin branched junction and place these in the context of what was previously known to provide a global overview of how the Arp2/3 complex is regulated in human cells. We focus on the human set of Arp2/3 regulators to compare normal Arp2/3 regulation in untransformed cells to the deregulation of the Arp2/3 system observed in patients affected by various cancers. In many cases, these deregulations promote cancer progression and have a direct impact on patient survival.

139 citations

Journal ArticleDOI
TL;DR: In this article, the light-by-light scattering process in ultra-peripheral PbPb collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV is reported.

139 citations

Journal ArticleDOI
TL;DR: An overview of experimental data and theoretical computational methods for effective cross sections of charge exchange (electron capture) and electron loss (projectile ionization) processes involving heavy many-electron ions (like Xe qa,P b qa, W qa and U qa ) colliding with neutral atoms (H, He, N, Ne, Ar, Kr, Xe) in the E 10 keV/u-10 GeV/U energy range, i.e., from low up to relativistic energies as mentioned in this paper.
Abstract: An overview of experimental data and theoretical computational methods is given for effective cross sections of charge exchange (electron capture) and electron loss (projectile ionization) processes involving heavy many-electron ions (like Xe qa ,P b qa ,W qa ,U qa ) colliding with neutral atoms (H, He, N, Ne, Ar, Kr, Xe) in the E 10 keV/u-10 GeV/u energy range, i.e., from low up to relativistic energies. These charge- changing processes can occur with a high probability, reaching 10 ˇ14 ˇ10 ˇ16 cm 2 cross-section values and, therefore, they play a key role in the kinetics of laboratory and astrophysical plasmas and influence the lifetimes of ion beams in accelerator facilities. Multielectron capture and loss processes are consid- ered, as well, since their importance in the case of heavy atomic projectiles strongly increases, and a contribution to the total cross sections reaches more than 50%. An important aspect of the overview is a consideration of the influence of the inner-shell electrons of two colliding systemsand arole of isotope effects in electron capture by very slow ions (E 10ˇ100 eV/u) from hydrogen isotopes H, D, and T. A short description of the corresponding computer codes is given for the calculation of cross sections of electron capture and electron loss processes for complex atoms and ions over a wide collision energy range.

138 citations


Authors

Showing all 8797 results

NameH-indexPapersCitations
Dominique Pallin132113188668
Vladimir N. Uversky13195975342
Lee Sawyer130134088419
Dmitry Novikov12734883093
Simon Lin12675469084
Zeno Dixon Greenwood126100277347
Christian Ohm12687369771
Alexey Myagkov10958645630
Stanislav Babak10730866226
Alexander Zaitsev10345348690
Vladimir Popov102103050257
Alexander Vinogradov9641040879
Gueorgui Chelkov9332141816
Igor Pshenichnov8336222699
Vladimir Popov8337026390
Network Information
Related Institutions (5)
Moscow State University
123.3K papers, 1.7M citations

94% related

Russian Academy of Sciences
417.5K papers, 4.5M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

86% related

University of Paris-Sud
52.7K papers, 2.1M citations

86% related

Royal Institute of Technology
68.4K papers, 1.9M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202368
2022238
20211,774
20202,247
20192,112
20181,902