scispace - formally typeset
Search or ask a question
Institution

Moscow Institute of Physics and Technology

EducationDolgoprudnyy, Russia
About: Moscow Institute of Physics and Technology is a education organization based out in Dolgoprudnyy, Russia. It is known for research contribution in the topics: Laser & Plasma. The organization has 8594 authors who have published 16968 publications receiving 246551 citations. The organization is also known as: MIPT & Moscow Institute of Physics and Technology (State University).


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a semi-quantitative theory of electron pairing and resulting superconductivity in bulk "poor conductors" in which Fermi energy EF is located in the region of localized states not so far from the Anderson mobility edge Ec.

136 citations

Journal ArticleDOI
TL;DR: In this article, the efficiency of nanosecond discharges as an active-particle generator for plasma-assisted combustion and ignition has been investigated and a significant increase of the flame blowoff velocity has been demonstrated.
Abstract: The efficiency of nanosecond discharges as an active-particle generator for plasma-assisted combustion and ignition has been shown. The kinetics of alkane oxidation have been investigated from methane to decane in stoichiometric and lean mixtures with oxygen and air at room temperature under the action of high-voltage nanosecond unform discharge. The study of nanosecond barrier discharge influence on a flame propagation and flame blowoff velocity has been carried out. A significant increase of the flame blowoff velocity has been demonstrated. A decrease of 2-3 orders of magnitude of the plasma-assisted ignition delay time in comparison with the autoignition has been registered. Detonation initiating by high-voltage gas discharge has been demonstrated. The energy deposition in the discharge ranging from 70 mJ to 12 J for propane-oxygen-nitrogen mixtures leads to the transition to detonation at a distance of less than one diameter of the detonation tube. The influence of pulsed surface dielectric discharge on the flow separation for airfoils at a high angle of attack has been investigated within the velocity range from 20 to 110 m/s for the power consumption less than 1 W/cm of the wing span. The conclusion has been made that the main mechanism of plasma impact is the boundary-layer turbulization rather than acceleration.

136 citations

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2939 moreInstitutions (203)
TL;DR: In this paper, the performance of various modified jet algorithms, or jet grooming techniques, for several jet types and event topologies is investigated for jets with transverse momentum larger than 300 GeV.
Abstract: This paper presents the application of a variety of techniques to study jet substructure. The performance of various modified jet algorithms, or jet grooming techniques, for several jet types and event topologies is investigated for jets with transverse momentum larger than 300 GeV. Properties of jets subjected to the mass-drop filtering, trimming, and pruning algorithms are found to have a reduced sensitivity to multiple proton-proton interactions, are more stable at high luminosity and improve the physics potential of searches for heavy boosted objects. Studies of the expected discrimination power of jet mass and jet substructure observables in searches for new physics are also presented. Event samples enriched in boosted W and Z bosons and top-quark pairs are used to study both the individual jet invariant mass scales and the efficacy of algorithms to tag boosted hadronic objects. The analyses presented use the full 2011 ATLAS dataset, corresponding to an integrated luminosity of 4.7 +/- 0.1 fb(-1) from proton-proton collisions produced by the Large Hadron Collider at a centre-of-mass energy of root s = 7 TeV.

135 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyze the dynamic and stochastic properties of molecular dynamics systems connected with the local instability of trajectories and the errors of the numerical integration and propose a concept explaining the finite dynamic memory time and the emergence of irreversibility in real systems.
Abstract: The work is devoted to fundamental aspects of the classical molecular dynamics method, which was developed half a century ago as a means of solving computational problems in statistical physics and has now become one of the most important numerical methods in the theory of condensed state. At the same time, the molecular dynamics method based on solving the equations of motion for a multiparticle system proved to be directly related to the basic concepts of classical statistical physics, in particular, to the problem of the occurrence of irreversibility. This paper analyzes the dynamic and stochastic properties of molecular dynamics systems connected with the local instability of trajectories and the errors of the numerical integration. The probabilistic nature of classical statistics is discussed. We propose a concept explaining the finite dynamic memory time and the emergence of irreversibility in real systems.

135 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +2871 moreInstitutions (212)
TL;DR: In this paper, a search for new particles that decay into top quark pairs was performed with the ATLAS experiment at the LHC using an integrated luminosity of 20.3 fb(-1) of proton-proton collision data collected at a center-of-mass energy of root s = 8TeV.
Abstract: A search for new particles that decay into top quark pairs is reported. The search is performed with the ATLAS experiment at the LHC using an integrated luminosity of 20.3 fb(-1) of proton-proton collision data collected at a centre-of-mass energy of root s = 8TeV. The lepton-plus-jets final state is used, where the top pair decays to W (+) bW(-)(b) over bar, with one W boson decaying leptonically and the other hadronically. The invariant mass spectrum of top quark pairs is examined for local excesses or deficits that are inconsistent with the Standard Model predictions. No evidence for a top quark pair resonance is found, and 95% confidence-level limits on the production rate are determined for massive states in benchmark models. The upper limits on the cross-section times branching ratio of a narrow Z' boson decaying to top pairs range from 4.2 pb to 0.03 pb for resonance masses from 0.4 TeV to 3.0 TeV. A narrow leptophobic topcolour Z' boson with mass below 1.8 TeV is excluded. Upper limits are set on the cross-section times branching ratio for a broad colour-octet resonance with Gamma/m = 15% decaying to tt. These range from 4.8 pb to 0.03 pb for masses from 0.4 TeV to 3.0 TeV. A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below 2.2 TeV.

135 citations


Authors

Showing all 8797 results

NameH-indexPapersCitations
Dominique Pallin132113188668
Vladimir N. Uversky13195975342
Lee Sawyer130134088419
Dmitry Novikov12734883093
Simon Lin12675469084
Zeno Dixon Greenwood126100277347
Christian Ohm12687369771
Alexey Myagkov10958645630
Stanislav Babak10730866226
Alexander Zaitsev10345348690
Vladimir Popov102103050257
Alexander Vinogradov9641040879
Gueorgui Chelkov9332141816
Igor Pshenichnov8336222699
Vladimir Popov8337026390
Network Information
Related Institutions (5)
Moscow State University
123.3K papers, 1.7M citations

94% related

Russian Academy of Sciences
417.5K papers, 4.5M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

86% related

University of Paris-Sud
52.7K papers, 2.1M citations

86% related

Royal Institute of Technology
68.4K papers, 1.9M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202368
2022238
20211,774
20202,247
20192,112
20181,902