scispace - formally typeset
Search or ask a question
Institution

Moscow Institute of Physics and Technology

EducationDolgoprudnyy, Russia
About: Moscow Institute of Physics and Technology is a education organization based out in Dolgoprudnyy, Russia. It is known for research contribution in the topics: Laser & Large Hadron Collider. The organization has 8594 authors who have published 16968 publications receiving 246551 citations. The organization is also known as: MIPT & Moscow Institute of Physics and Technology (State University).


Papers
More filters
Journal ArticleDOI
TL;DR: This work investigates the spin-dependent electronic transport across vdW magnetic tunnel junctions (MTJs) composed of Fe3GeTe2 ferromagnetic electrodes and a graphene or hexagonal boron nitride (h-BN) spacer layer and finds that the junction resistance changes by thousands of percent when the magnetization of the electrodes is switched from parallel to antiparallel.
Abstract: van der Waals (vdW) heterostructures, stacking different two-dimensional materials, have opened up unprecedented opportunities to explore new physics and device concepts. Especially interesting are recently discovered two-dimensional magnetic vdW materials, providing new paradigms for spintronic applications. Here, using density functional theory (DFT) calculations, we investigate the spin-dependent electronic transport across vdW magnetic tunnel junctions (MTJs) composed of Fe3GeTe2 ferromagnetic electrodes and a graphene or hexagonal boron nitride (h-BN) spacer layer. For both types of junctions, we find that the junction resistance changes by thousands of percent when the magnetization of the electrodes is switched from parallel to antiparallel. Such a giant tunneling magnetoresistance (TMR) effect is driven by dissimilar electronic structure of the two spin-conducting channels in Fe3GeTe2, resulting in a mismatch between the incoming and outgoing Bloch states in the electrodes and thus suppressed transmission for an antiparallel-aligned MTJ. The vdW bonding between electrodes and a spacer layer makes this result virtually independent of the type of the spacer layer, making the predicted giant TMR effect robust with respect to strain, interface distance, and other parameters, which may vary in the experiment. We hope that our results will further stimulate experimental studies of vdW MTJs and pave the way for their applications in spintronics.

101 citations

Journal ArticleDOI
TL;DR: In this article, the CdSe:Cr crystal was pumped at the room temperature (RT) by a continuous wave (CW) 1.908-μm thulium fiber laser, and the output laser power at 2.6 μm was increased up to 1.7 W.
Abstract: Seeded free growth method with physical transport was used for preparation of large-size II—VI single crystals uniformly doped by transition metals directly during the growth. The grown crystals possess small intrinsic losses. Based on these crystals new results on development of mid-IR lasers were achieved. With the CdSe:Cr crystal pumped at the room temperature (RT) by a continuous wave (CW) 1.908-μm thulium fiber laser, output laser power at 2.6 μm was increased up to 1.7 W. CW lasing from the ZnSe:Fe crystal was achieved using the 2.97-μm CW Cr 2+ :CdSe laser as a pump source. In this case the output power as high as 0.2 W was obtained at 4.1 μm and T=80 K. Broad spectral tuning of the Cr 2+ :CdSe (2.26-3.61 μm) and Fe 2+ :ZnSe (3.95-5.05 μm) lasers was achieved at RT in the pulsed operation. The RT laser action from CdS:Cr and CdSe:Fe was demonstrated for the first time. The output power of the CW Cr +2 :CdS laser was 0.81 W. The pulsed Fe 2+ :CdSe laser was tuned in the 4.6-5.9 μm spectral range.

101 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +2871 moreInstitutions (213)
TL;DR: In this paper, a search for Higgs boson production in association with a W or Z boson, in the H -> WW* decay channel, is performed with a data sample collected with the ATLAS detector at the LHC in proton-proton collisions at centre-of-mass energies root s = 7 TeV and 8TeV, corresponding to integrated luminosities of 4.5 fb(-1) and 20.3 fb(1) respectively.
Abstract: A search for Higgs boson production in association with a W or Z boson, in the H -> WW* decay channel, is performed with a data sample collected with the ATLAS detector at the LHC in proton-proton collisions at centre-of-mass energies root s = 7 TeV and 8TeV, corresponding to integrated luminosities of 4.5 fb(-1) and 20.3 fb(-1), respectively. The W H production mode is studied in two-lepton and three-lepton final states, while twolepton and four-lepton final states are used to search for the ZH production mode. The observed significance, for the combined WH and ZH production, is 2.5 standard deviations while a significance of 0.9 standard deviations is expected in the Standard Model Higgs boson hypothesis. The ratio of the combined W H and Z H signal yield to the Standard Model expectation, mu(VH), is found to be mu(VH) = 3.0(-1.1)(+1.3)(stat.)(-0.7)(+1.0) (sys.) for the Higgs boson mass of 125.36 GeV. The WH and ZH production modes are also combined with the gluon fusion and vector boson fusion production modes studied in the H -> WW* -> l nu l nu decay channel, resulting in an overall observed significance of 6.5 standard deviations and mu F-gg+VBF+VH = 1.16(-0.15)(+0.16)(stat.)(-0.15)(+0.18)(sys.). The results are interpreted in terms of scaling factors of the Higgs boson couplings to vector bosons (kappa(V)) and fermions (kappa(F)); the combined results are: vertical bar kappa(V)vertical bar = 1.06(-0.10)(+0.10), vertical bar kappa(F)vertical bar = 0.85(-0.20)(+0.26)

101 citations

Journal ArticleDOI
TL;DR: The ability to solve the crystallographic phase problem for SFX data collected with an XFEL using the anomalous signal from native sulfur atoms is demonstrated, leading to a bias-free room temperature structure of the human A2A adenosine receptor at 1.9 Å resolution.
Abstract: Serial femtosecond crystallography (SFX) takes advantage of extremely bright and ultrashort pulses produced by x-ray free-electron lasers (XFELs), allowing for the collection of high-resolution diffraction intensities from micrometer-sized crystals at room temperature with minimal radiation damage, using the principle of “diffraction-before-destruction.” However, de novo structure factor phase determination using XFELs has been difficult so far. We demonstrate the ability to solve the crystallographic phase problem for SFX data collected with an XFEL using the anomalous signal from native sulfur atoms, leading to a bias-free room temperature structure of the human A2A adenosine receptor at 1.9 A resolution. The advancement was made possible by recent improvements in SFX data analysis and the design of injectors and delivery media for streaming hydrated microcrystals. This general method should accelerate structural studies of novel difficult-to-crystallize macromolecules and their complexes.

100 citations

Journal ArticleDOI
TL;DR: In this paper, a far-field polarized IR reflectance spectra acquired on a single thick flake of the biaxial van der Waals semiconductor α-phase molybdenum trioxide (α-MoO3 ) was used to derive the dielectric function of the material.
Abstract: The biaxial van der Waals semiconductor α-phase molybdenum trioxide (α-MoO3 ) has recently received significant attention due to its ability to support highly anisotropic phonon polaritons (PhPs)-infrared (IR) light coupled to lattice vibrations-offering an unprecedented platform for controlling the flow of energy at the nanoscale. However, to fully exploit the extraordinary IR response of this material, an accurate dielectric function is required. Here, the accurate IR dielectric function of α-MoO3 is reported by modeling far-field polarized IR reflectance spectra acquired on a single thick flake of this material. Unique to this work, the far-field model is refined by contrasting the experimental dispersion and damping of PhPs, revealed by polariton interferometry using scattering-type scanning near-field optical microscopy (s-SNOM) on thin flakes of α-MoO3 , with analytical and transfer-matrix calculations, as well as full-wave simulations. Through these correlative efforts, exceptional quantitative agreement is attained to both far- and near-field properties for multiple flakes, thus providing strong verification of the accuracy of this model, while offering a novel approach to extracting dielectric functions of nanomaterials. In addition, by employing density functional theory (DFT), insights into the various vibrational states dictating the dielectric function model and the intriguing optical properties of α-MoO3 are provided.

100 citations


Authors

Showing all 8797 results

NameH-indexPapersCitations
Dominique Pallin132113188668
Vladimir N. Uversky13195975342
Lee Sawyer130134088419
Dmitry Novikov12734883093
Simon Lin12675469084
Zeno Dixon Greenwood126100277347
Christian Ohm12687369771
Alexey Myagkov10958645630
Stanislav Babak10730866226
Alexander Zaitsev10345348690
Vladimir Popov102103050257
Alexander Vinogradov9641040879
Gueorgui Chelkov9332141816
Igor Pshenichnov8336222699
Vladimir Popov8337026390
Network Information
Related Institutions (5)
Moscow State University
123.3K papers, 1.7M citations

94% related

Russian Academy of Sciences
417.5K papers, 4.5M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

86% related

University of Paris-Sud
52.7K papers, 2.1M citations

86% related

Royal Institute of Technology
68.4K papers, 1.9M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202368
2022238
20211,774
20202,246
20192,112
20181,902