scispace - formally typeset
Search or ask a question
Institution

Moscow Institute of Physics and Technology

EducationDolgoprudnyy, Russia
About: Moscow Institute of Physics and Technology is a education organization based out in Dolgoprudnyy, Russia. It is known for research contribution in the topics: Laser & Large Hadron Collider. The organization has 8594 authors who have published 16968 publications receiving 246551 citations. The organization is also known as: MIPT & Moscow Institute of Physics and Technology (State University).


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the DANSS project is aimed at creating a relatively compact neutrino spectrometer which does not contain any flammable or other dangerous liquids and may therefore be located very close to the core of an industrial power reactor.
Abstract: The DANSS project is aimed at creating a relatively compact neutrino spectrometer which does not contain any flammable or other dangerous liquids and may therefore be located very close to the core of an industrial power reactor. As a result, it is expected that high neutrino flux would provide about 15,000 IBD interactions per day in the detector with a sensitive volume of 1 m3. High segmentation of the plastic scintillator will allow to suppress a background down to a ~1% level. Numerous tests performed with a simplified pilot prototype DANSSino under a 3 GWth reactor of the Kalinin NPP have demonstrated operability of the chosen design. The DANSS detector surrounded with a composite shield is movable by means of a special lifting gear, varying the distance to the reactor core in a range from 10 m to 12 m. Due to this feature, it could be used not only for the reactor monitoring, but also for fundamental research including short-range neutrino oscillations to the sterile state. Supposing one-year measurement, the sensitivity to the oscillation parameters is expected to reach a level of sin2(2θnew) ~ 5 × 10−3 with Δ m2 ⊂ (0.02–5.0) eV2.

96 citations

Journal ArticleDOI
TL;DR: The presented concept creates the backbone for the implementation of highly integrated large-scale hybrid electronic-plasmonic circuits operating at extremely high speeds and opens the prospects for the realization of integrated coherent SPP sources.
Abstract: We propose a very efficient approach for amplification of surface plasmon polaritons (SPPs) in a nanoscale waveguiding geometry with strong (∼λ/10) mode confinement. The implemented scheme of electric pumping is based on a single-heterostructure Schottky-barrier diode and has been numerically shown to ensure full compensation of the SPP propagation losses at wavelengths around 3 μm and, moreover, to provide net SPP gain. The presented concept creates the backbone for the implementation of highly integrated large-scale hybrid electronic-plasmonic circuits operating at extremely high speeds and opens the prospects for the realization of integrated coherent SPP sources.

96 citations

Journal ArticleDOI
TL;DR: In this paper, the allowed parameter space of the simple chaotic inflationary model with quartic potential and light inflaton was updated taking into account recent results from cosmology (CMB observations from SPT, ACT and WMAP) and from particle physics (LHC hints of the SM Higgs boson).
Abstract: We update the allowed parameter space of the simple chaotic inflationary model with quartic potential and light inflaton [1] taking into account recent results from cosmology (CMB observations from SPT, ACT and WMAP) and from particle physics (LHC hints of the SM Higgs boson). The non-minimal (yet small) coupling to gravity of the inflaton becomes essential to fit the observational data. The inflaton has mass above 300 MeV and can be searched for at B-factories in B-meson two-body decays to kaon and inflaton. The inflaton lifetime depends on the model parameters, resulting in various inflaton signatures: either a missing energy, or a displaced vertex from the B-meson decay position, or a resonance in the Dalitz plot of a three particle decay. We also discuss the implementation of the inflaton model to the νMSM, where the inflaton can be responsible for production of the dark matter sterile neutrino in the early Universe.

96 citations

Journal ArticleDOI
TL;DR: In this article, a compact dual-comb source based on a monolithic optical crystalline MgF2 multi-resonator stack is presented. But the system is not suitable for coherent LIDAR applications.
Abstract: We present a novel compact dual-comb source based on a monolithic optical crystalline MgF2 multi-resonator stack. The coherent soliton combs generated in the two microresonators of the stack with the repetition rate of 12.1 GHz and difference of 1.62 MHz provided after heterodyning a 300 MHz wide radio frequency comb. An analogous system can be used for dual-comb spectroscopy, coherent LIDAR applications, and massively parallel optical communications.

95 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +2853 moreInstitutions (211)
TL;DR: In this paper, the authors presented evidence for single top-quark production in the s-channel using proton-proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS detector at the CERN Large Hadron Co...

95 citations


Authors

Showing all 8797 results

NameH-indexPapersCitations
Dominique Pallin132113188668
Vladimir N. Uversky13195975342
Lee Sawyer130134088419
Dmitry Novikov12734883093
Simon Lin12675469084
Zeno Dixon Greenwood126100277347
Christian Ohm12687369771
Alexey Myagkov10958645630
Stanislav Babak10730866226
Alexander Zaitsev10345348690
Vladimir Popov102103050257
Alexander Vinogradov9641040879
Gueorgui Chelkov9332141816
Igor Pshenichnov8336222699
Vladimir Popov8337026390
Network Information
Related Institutions (5)
Moscow State University
123.3K papers, 1.7M citations

94% related

Russian Academy of Sciences
417.5K papers, 4.5M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

86% related

University of Paris-Sud
52.7K papers, 2.1M citations

86% related

Royal Institute of Technology
68.4K papers, 1.9M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202368
2022238
20211,774
20202,246
20192,112
20181,902