scispace - formally typeset
Search or ask a question
Institution

Moscow State University

EducationMoscow, Russia
About: Moscow State University is a education organization based out in Moscow, Russia. It is known for research contribution in the topics: Laser & Population. The organization has 66747 authors who have published 123358 publications receiving 1753995 citations. The organization is also known as: MSU & Lomonosov Moscow State University.


Papers
More filters
Journal ArticleDOI
12 Jan 2007-Polymer
TL;DR: In this paper, the elastic modulus of highly elastic magnetic elastomers has been studied by three different experimental techniques: elongation, static and dynamic shears, and it has been shown that the material elasticity increases considerably in an external homogeneous magnetic field of up to 0.3 T (100-fold increase of the tangential modulus has been observed at small 1-4% deformations).

314 citations

Journal ArticleDOI
Leor Barack1, Vitor Cardoso2, Vitor Cardoso3, Samaya Nissanke4  +228 moreInstitutions (101)
TL;DR: A comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress can be found in this article, which is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'.
Abstract: The grand challenges of contemporary fundamental physics-dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem-all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'. © 2019 IOP Publishing Ltd.

314 citations

Journal ArticleDOI
TL;DR: In this article, the fluence of 1ES 0229+200 as seen by Fermi-LAT for different EGMF profiles was calculated using a Monte Carlo simulation for the cascade development.
Abstract: High-energy photons from blazars can initiate electromagnetic pair cascades interacting with the extragalactic photon background. The charged component of such cascades is deflected and delayed by extragalactic magnetic fields (EGMFs), thereby reducing the observed point-like flux and potentially leading to multi-degree images in the GeV energy range. We calculate the fluence of 1ES 0229+200 as seen by Fermi-LAT for different EGMF profiles using a Monte Carlo simulation for the cascade development. The non-observation of 1ES 0229+200 by Fermi-LAT suggests that the EGMF fills at least 60% of space with fields stronger than G for lifetimes of TeV activity of yr. Thus, the (non-)observation of GeV extensions around TeV blazars probes the EGMF in voids and puts strong constraints on the origin of EGMFs: either EGMFs were generated in a space filling manner (e.g., primordially) or EGMFs produced locally (e.g., by galaxies) have to be efficiently transported to fill a significant volume fraction as, e.g., by galactic outflows.

313 citations

Journal ArticleDOI
TL;DR: The Porcupine Basin, southwest of Ireland, was one of the earliest sites from where the deep-water corals Lophelia sp. and Madrepora sp. were recovered as mentioned in this paper.

313 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch angle scattering of relativistic and ultrarelativistic electrons during the recovery phase of a moderate geomagnetic storm on 11 October 2012 was studied.
Abstract: We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch angle scattering of relativistic and ultrarelativistic electrons during the recovery phase of a moderate geomagnetic storm on 11 October 2012 The EMIC wave activity was observed in situ on the Van Allen Probes and conjugately on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity throughout an extended 18 h interval However, neither enhanced precipitation of >07 MeV electrons nor reductions in Van Allen Probe 90° pitch angle ultrarelativistic electron flux were observed Computed radiation belt electron pitch angle diffusion rates demonstrate that rapid pitch angle diffusion is confined to low pitch angles and cannot reach 90° For the first time, from both observational and modeling perspectives, we show evidence of EMIC waves triggering ultrarelativistic (~2–8 MeV) electron loss but which is confined to pitch angles below around 45° and not affecting the core distribution

313 citations


Authors

Showing all 68238 results

NameH-indexPapersCitations
Krzysztof Matyjaszewski1691431128585
A. Gomes1501862113951
Robert J. Sternberg149106689193
James M. Tour14385991364
Alexander Belyaev1421895100796
Rainer Wallny1411661105387
I. V. Gorelov1391916103133
António Amorim136147796519
Halina Abramowicz134119289294
Grigory Safronov133135894610
Elizaveta Shabalina133142192273
Alexander Zhokin132132386842
Eric Conte132120684593
Igor V. Moskalenko13254258182
M. Davier1321449107642
Network Information
Related Institutions (5)
Russian Academy of Sciences
417.5K papers, 4.5M citations

96% related

Saint Petersburg State University
53.4K papers, 1.1M citations

93% related

Russian Academy
17.7K papers, 340.7K citations

88% related

National Academy of Sciences of Ukraine
59.4K papers, 573.4K citations

87% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023541
20221,582
20217,040
20208,673
20198,296
20187,187