scispace - formally typeset
Search or ask a question
Institution

Moscow State University

EducationMoscow, Russia
About: Moscow State University is a education organization based out in Moscow, Russia. It is known for research contribution in the topics: Catalysis & Laser. The organization has 66747 authors who have published 123358 publications receiving 1753995 citations. The organization is also known as: MSU & Lomonosov Moscow State University.


Papers
More filters
Journal ArticleDOI
TL;DR: Halloysite, naturally occurring clay nanotubes, is described as an additive for functional polymer composites that provides additional functions to polymeric composites synergistically combined with enhanced tensile, impact and adhesive strength.
Abstract: Halloysite, naturally occurring clay nanotubes, is described as an additive for functional polymer composites. Due to the empty tubular lumen capable of being loaded with chemically active agents, halloysite provides additional functions (drug delivery, antibiotic, flame-retardant, anticorrosion, and crack self-healing) to polymeric composites synergistically combined with enhanced tensile, impact and adhesive strength. Doping loaded clay nanotubes into a polymeric matrix provides a kind of ceramic “skeleton”, and these “skeleton bones” are loaded with functional chemicals like real bones loaded with marrow. Tunable controlled release of active agents through synthesis of artificial nano-caps at the tube endings and halloysite lumen enlargement by selective etching allowed for tubular nanocontainers with chemicals release time from 10 to 200 h and a loading capacity of ca. 30 wt%. Halloysite is well mixable with polymers of high and medium polarities without any surface modification.

208 citations

Journal ArticleDOI
Morad Aaboud, Georges Aad1, Brad Abbott2, Ovsat Abdinov3  +2878 moreInstitutions (197)
TL;DR: The performance of the missing transverse momentum reconstruction with the ATLAS detector is evaluated using data collected in proton–proton collisions at the LHC at a centre-of-mass energy of 13 TeV in 2015.
Abstract: The performance of the missing transverse momentum ( ETmiss ) reconstruction with the ATLAS detector is evaluated using data collected in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV in 2015. To reconstruct ETmiss , fully calibrated electrons, muons, photons, hadronically decaying τ-leptons , and jets reconstructed from calorimeter energy deposits and charged-particle tracks are used. These are combined with the soft hadronic activity measured by reconstructed charged-particle tracks not associated with the hard objects. Possible double counting of contributions from reconstructed charged-particle tracks from the inner detector, energy deposits in the calorimeter, and reconstructed muons from the muon spectrometer is avoided by applying a signal ambiguity resolution procedure which rejects already used signals when combining the various ETmiss contributions. The individual terms as well as the overall reconstructed ETmiss are evaluated with various performance metrics for scale (linearity), resolution, and sensitivity to the data-taking conditions. The method developed to determine the systematic uncertainties of the ETmiss scale and resolution is discussed. Results are shown based on the full 2015 data sample corresponding to an integrated luminosity of 3.2fb-1 .

208 citations

Journal ArticleDOI
TL;DR: In this paper, the phase correlation of two colours (63.0 and 31.5 nm wavelengths) in a free-electron laser and control photoelectron angular distribution by adjusting phase with 3 attosecond resolution was demonstrated.
Abstract: Researchers demonstrate correlation of two colours (63.0 and 31.5 nm wavelengths) in a free-electron laser and control photoelectron angular distribution by adjusting phase with 3 attosecond resolution. Extreme ultraviolet and X-ray free-electron lasers (FELs) produce short-wavelength pulses with high intensity, ultrashort duration, well-defined polarization and transverse coherence, and have been utilized for many experiments previously possible only at long wavelengths: multiphoton ionization1, pumping an atomic laser2 and four-wave mixing spectroscopy3. However one important optical technique, coherent control, has not yet been demonstrated, because self-amplified spontaneous emission FELs have limited longitudinal coherence4,5,6,7. Single-colour pulses from the FERMI seeded FEL are longitudinally coherent8,9, and two-colour emission is predicted to be coherent. Here, we demonstrate the phase correlation of two colours, and manipulate it to control an experiment. Light of wavelengths 63.0 and 31.5 nm ionized neon, and we controlled the asymmetry of the photoelectron angular distribution10,11 by adjusting the phase, with a temporal resolution of 3 as. This opens the door to new short-wavelength coherent control experiments with ultrahigh time resolution and chemical sensitivity.

208 citations

Journal ArticleDOI
TL;DR: The magnetocaloric effect and magnetic permeability in annealed and quenched samples of Fe 49 Rh 51 alloys have been investigated in this article, where giant negative temperature changes about 13 K by applying a magnetic field at B = 2 T to the quencher sample of Fe 48 Rh 51 alloy have been observed.

208 citations

Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam  +2325 moreInstitutions (191)
TL;DR: In this paper, an upper bound on the branching fraction of the Higgs boson decay to invisible particles, as a function of the assumed production cross-sections, was established, and the results were also interpreted in the context of Higgs-portal dark matter models.
Abstract: Searches for invisible decays of the Higgs boson are presented. The data collected with the CMS detector at the LHC correspond to integrated luminosities of 5.1, 19.7, and 2.3 fb−1 at centre-of-mass energies of 7, 8, and 13 TeV, respectively. The search channels target Higgs boson production via gluon fusion, vector boson fusion, and in association with a vector boson. Upper limits are placed on the branching fraction of the Higgs boson decay to invisible particles, as a function of the assumed production cross sections. The combination of all channels, assuming standard model production, yields an observed (expected) upper limit on the invisible branching fraction of 0.24 (0.23) at the 95% confidence level. The results are also interpreted in the context of Higgs-portal dark matter models.

208 citations


Authors

Showing all 68238 results

NameH-indexPapersCitations
Krzysztof Matyjaszewski1691431128585
A. Gomes1501862113951
Robert J. Sternberg149106689193
James M. Tour14385991364
Alexander Belyaev1421895100796
Rainer Wallny1411661105387
I. V. Gorelov1391916103133
António Amorim136147796519
Halina Abramowicz134119289294
Grigory Safronov133135894610
Elizaveta Shabalina133142192273
Alexander Zhokin132132386842
Eric Conte132120684593
Igor V. Moskalenko13254258182
M. Davier1321449107642
Network Information
Related Institutions (5)
Russian Academy of Sciences
417.5K papers, 4.5M citations

96% related

Saint Petersburg State University
53.4K papers, 1.1M citations

93% related

Russian Academy
17.7K papers, 340.7K citations

88% related

National Academy of Sciences of Ukraine
59.4K papers, 573.4K citations

87% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023541
20221,582
20217,040
20208,674
20198,296
20187,187