scispace - formally typeset
Search or ask a question
Institution

Moscow State University

EducationMoscow, Russia
About: Moscow State University is a education organization based out in Moscow, Russia. It is known for research contribution in the topics: Laser & Population. The organization has 66747 authors who have published 123358 publications receiving 1753995 citations. The organization is also known as: MSU & Lomonosov Moscow State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions.
Abstract: This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, tau lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during data taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.

532 citations

Book ChapterDOI
TL;DR: The chapter discusses three methods by which the digestion rate in fish is estimated––namely, by measuring the time interval between food intake and defecation, byasuring the stomach contents at various time intervals after feeding, and by using X-rays for observing the progress of digestion with time.
Abstract: Publisher Summary This chapter describes the alimentary canal and digestion in teleosts. It recognizes several types of teleosts on the basis of the different foods taken by them and their feeding habits: plankton feeders, herbivores, omnivores, carnivores, and specialists. The various degrees of specialization in feeding habits lead to the distinction of europhags, stenophags and monophags. Many cell types of the teleost digestive tract have been examined electron-microscopically, such as oral epithelial cells, chloride cells, scattered chemosensory cells, the cells of taste buds, intestinal goblet cells, and epithelium cells. Histo- and cyto-chemical techniques have been used in the study of the teleostean alimentary canal. Because the inner lining of this canal is mucified, emphasis is given to the mucus-secreting cells, which appear to contain either neutral or acidic mucopolysaccharides. In many teleosts, alkaline phosphatase and acid phosphatase activity has been detected in the brush-border of intestinal and cecal epithelia. Feeding rates have been measured by observing food intake under laboratory conditions with restricted or excess rations. The chapter discusses three methods by which the digestion rate in fish is estimated––namely, (1) by measuring the time interval between food intake and defecation, (2) by measuring the stomach contents at various time intervals after feeding, and (3) by using X-rays for observing the progress of digestion with time.

527 citations

Journal ArticleDOI
TL;DR: In this paper, a self-consistent two-dimensional modeling of the temporal and spatial development of a microdischarge and discharge step is investigated numerically, and the results lead to an understanding of the dynamics of DBDs.
Abstract: Dielectric barrier discharges (DBDs) occur in configurations which are characterized by a dielectric layer between conducting electrodes. Two basic configurations can be distinguished: a volume discharge (VD) arrangement with a gas gap; and a surface discharge (SD) arrangement with surface electrode(s) on a dielectric layer and an extensive counter electrode on its reverse side. At atmospheric pressure the DBD consists of numerous microdischarges (VD) and discharge steps (SD), respectively, their number being proportional to the amplitude of the voltage. These events have a short duration in the range of some 10 ns transferring a certain amount of charge within the discharge region. The total transferred charge determines the current and hence the volt-ampere characteristic of each arrangement. The microdischarges (discharge steps) have a complicated spatial structure. The discharge patterns on the dielectric surface depend on the polarity and amplitude of the applied voltage as well as on the specific capacity of the dielectric. Experimental findings on DBDs in air and oxygen are presented and discussed. On the basis of a self-consistent two-dimensional modelling the temporal and spatial development of a microdischarge and discharge step are investigated numerically. The results lead to an understanding of the dynamics of DBDs. Although in VD arrangements cathode-directed streamers appear especially in electronegative gases, their appearance is rather unlikely in SD arrangements. The application of DBDs for plasma-chemical reactions is determined by the productivity, with which the energy of the electric field can be converted into internal states of atoms and/or molecules. Depending on the desired product it could be both the generation of internal electronic states of molecules or atoms and dissociation products of molecules. The discharge current and current density of DBDs in both the SD and VD arrangements as well as the energy release and energy density distribution in the discharge region are presented. As an example the effectiveness of the energy conversion into ozone production is detailed. Some peculiarities of the discharge parameters, for instance the correlation between discharge patterns (microdischarges or discharge steps) and surface charge density, are discussed.

526 citations

Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1491 moreInstitutions (239)
TL;DR: In this article, the authors present the second volume of the Future Circular Collider Conceptual Design Report, devoted to the electron-positron collider FCC-ee, and present the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan.
Abstract: In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics.

526 citations

Journal ArticleDOI
TL;DR: In this paper, the structural equivalence of the Zimbardo Time Perspective Inventory (ZTPI) across 26 samples from 24 countries (N = 12,200) was assessed.
Abstract: In this article, we assess the structural equivalence of the Zimbardo Time Perspective Inventory (ZTPI) across 26 samples from 24 countries (N = 12,200). The ZTPI is proven to be a valid and reliable index of individual differences in time perspective across five temporal categories: Past Negative, Past Positive, Present Fatalistic, Present Hedonistic, and Future. We obtained evidence for invariance of 36 items (out of 56) and also the five-factor structure of ZTPI across 23 countries. The short ZTPI scales are reliable for country-level analysis, whereas we recommend the use of the full scales for individual-level analysis. The short version of ZTPI will further promote integration of research in the time perspective domain in relation to many different psycho-social processes.

525 citations


Authors

Showing all 68238 results

NameH-indexPapersCitations
Krzysztof Matyjaszewski1691431128585
A. Gomes1501862113951
Robert J. Sternberg149106689193
James M. Tour14385991364
Alexander Belyaev1421895100796
Rainer Wallny1411661105387
I. V. Gorelov1391916103133
António Amorim136147796519
Halina Abramowicz134119289294
Grigory Safronov133135894610
Elizaveta Shabalina133142192273
Alexander Zhokin132132386842
Eric Conte132120684593
Igor V. Moskalenko13254258182
M. Davier1321449107642
Network Information
Related Institutions (5)
Russian Academy of Sciences
417.5K papers, 4.5M citations

96% related

Saint Petersburg State University
53.4K papers, 1.1M citations

93% related

Russian Academy
17.7K papers, 340.7K citations

88% related

National Academy of Sciences of Ukraine
59.4K papers, 573.4K citations

87% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023541
20221,582
20217,040
20208,673
20198,296
20187,187