scispace - formally typeset
Search or ask a question
Institution

Moscow State University

EducationMoscow, Russia
About: Moscow State University is a education organization based out in Moscow, Russia. It is known for research contribution in the topics: Laser & Population. The organization has 66747 authors who have published 123358 publications receiving 1753995 citations. The organization is also known as: MSU & Lomonosov Moscow State University.


Papers
More filters
Journal ArticleDOI
09 Sep 2005-Cell
TL;DR: This work found that the level of Rab 5 dynamically fluctuates on individual early endosomes, linked by fusion and fission events into a network in time, and suggested Rab conversion as the mechanism of cargo progression between early and late endosome.

1,549 citations

Journal ArticleDOI
TL;DR: The computer program LOBSTER (Local Orbital Basis Suite Towards Electronic‐Structure Reconstruction) enables chemical‐bonding analysis based on periodic plane‐wave density‐functional theory output and is applicable to a wide range of first‐principles simulations in solid‐state and materials chemistry.
Abstract: The computer program LOBSTER (Local Orbital Basis Suite Towards Electronic-Structure Reconstruction) enables chemical-bonding analysis based on periodic plane-wave (PAW) density-functional theory (DFT) output and is applicable to a wide range of first-principles simulations in solid-state and materials chemistry. LOBSTER incorporates analytic projection routines described previously in this very journal [J. Comput. Chem. 2013, 34, 2557] and offers improved functionality. It calculates, among others, atom-projected densities of states (pDOS), projected crystal orbital Hamilton population (pCOHP) curves, and the recently introduced bond-weighted distribution function (BWDF). The software is offered free-of-charge for non-commercial research. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

1,531 citations

Journal ArticleDOI
TL;DR: In this paper, the authors scrutinize the basis on which the various methods and approaches rest, in order to assess their relevance to the specific electrochemical situation and, as far as possible, their absolute reliability.
Abstract: Electrode reaction rates and most double layer parameters are extensive quantities and have to be referred to the unit area of the interface. Knowledge of the real surface area of electrodes is therefore needed. Different methods have been proposed to normalize experimental data specifically with solid electrodes. Some of them are not sufficiently justified from a physical point of view. A few of them are definitely questionable. The purpose of this document is to scrutinize the basis on which the various methods and approaches rest, in order to assess their relevance to the specific electrochemical situation and, as far as possible, their absolute reliability

1,522 citations

Journal ArticleDOI
M. Punturo, M. R. Abernathy1, Fausto Acernese2, Benjamin William Allen3, Nils Andersson4, K. G. Arun5, Fabrizio Barone2, B. Barr1, M. Barsuglia6, M. G. Beker7, N. Beveridge1, S. Birindelli8, Suvadeep Bose9, L. Bosi, S. Braccini, C. Bradaschia, Tomasz Bulik10, Enrico Calloni, G. Cella, E. Chassande Mottin6, Simon Chelkowski11, Andrea Chincarini, John A. Clark12, E. Coccia13, C. N. Colacino, J. Colas, A. Cumming1, L. Cunningham1, E. Cuoco, S. L. Danilishin14, Karsten Danzmann3, G. De Luca, R. De Salvo15, T. Dent12, R. De Rosa, L. Di Fiore, A. Di Virgilio, M. Doets7, V. Fafone13, Paolo Falferi16, R. Flaminio17, J. Franc17, F. Frasconi, Andreas Freise11, Paul Fulda11, Jonathan R. Gair18, G. Gemme, A. Gennai11, A. Giazotto, Kostas Glampedakis19, M. Granata6, Hartmut Grote3, G. M. Guidi20, G. D. Hammond1, Mark Hannam21, Jan Harms22, D. Heinert23, Martin Hendry1, Ik Siong Heng1, Eric Hennes7, Stefan Hild1, J. H. Hough, Sascha Husa24, S. H. Huttner1, Gareth Jones12, F. Y. Khalili14, Keiko Kokeyama11, Kostas D. Kokkotas19, Badri Krishnan24, M. Lorenzini, Harald Lück3, Ettore Majorana, Ilya Mandel25, Vuk Mandic22, I. W. Martin1, C. Michel17, Y. Minenkov13, N. Morgado17, Simona Mosca, B. Mours26, H. Müller–Ebhardt3, P. G. Murray1, Ronny Nawrodt1, John Nelson1, Richard O'Shaughnessy27, Christian D. Ott15, C. Palomba, A. Paoli, G. Parguez, A. Pasqualetti, R. Passaquieti28, D. Passuello, L. Pinard17, Rosa Poggiani28, P. Popolizio, Mirko Prato, P. Puppo, D. S. Rabeling7, P. Rapagnani29, Jocelyn Read24, Tania Regimbau8, H. Rehbein3, Stuart Reid1, Luciano Rezzolla24, F. Ricci29, F. Richard, A. Rocchi, Sheila Rowan1, Albrecht Rüdiger3, Benoit Sassolas17, Bangalore Suryanarayana Sathyaprakash12, Roman Schnabel3, C. Schwarz, Paul Seidel, Alicia M. Sintes24, Kentaro Somiya15, Fiona C. Speirits1, Kenneth A. Strain1, S. E. Strigin14, P. J. Sutton12, S. P. Tarabrin14, Andre Thüring3, J. F. J. van den Brand7, C. van Leewen7, M. van Veggel1, C. Van Den Broeck12, Alberto Vecchio11, John Veitch11, F. Vetrano20, A. Viceré20, Sergey P. Vyatchanin14, Benno Willke3, Graham Woan1, P. Wolfango30, Kazuhiro Yamamoto3 
TL;DR: The third-generation ground-based observatory Einstein Telescope (ET) project as discussed by the authors is currently in its design study phase, and it can be seen as the first step in this direction.
Abstract: Advanced gravitational wave interferometers, currently under realization, will soon permit the detection of gravitational waves from astronomical sources. To open the era of precision gravitational wave astronomy, a further substantial improvement in sensitivity is required. The future space-based Laser Interferometer Space Antenna and the third-generation ground-based observatory Einstein Telescope (ET) promise to achieve the required sensitivity improvements in frequency ranges. The vastly improved sensitivity of the third generation of gravitational wave observatories could permit detailed measurements of the sources' physical parameters and could complement, in a multi-messenger approach, the observation of signals emitted by cosmological sources obtained through other kinds of telescopes. This paper describes the progress of the ET project which is currently in its design study phase.

1,497 citations

Journal ArticleDOI
TL;DR: The population of bone marrow cells is very heterogeneous, including haemopoietic cells, reticular cells and endosteum elements, and some of the pathways of differentiation open to bone marrow tissue are stimulated, while others are arrested.
Abstract: After heterotopic (e.g. subcutaneous) transplantation of bone marrow, haemopoiesis in the graft ceases; reticular tissue develops instead, and later bone is formed (Denis, 1958). The result can be achieved by grafting either free pieces of bone marrow or those placed in diffusion chambers (Petrakova, Tolmacheva & Friedenstein, 1963; Rosin, Freiberg & Sajnek, 1963). In the case of free transplantation the bone formed is later filled with bone marrow. After transplantation in diffusion chambers haemopoiesis does not recur despite the development of a considerable mass of bone in the chambers (Friedenstein, 1965). The population of bone marrow cells is very heterogeneous, including haemopoietic cells, reticular cells and endosteum elements. According to generally accepted views this population is a mixture of individual cell lines capable of mutual transformations within certain limits (Maximov, 1927; Burwell, 1964). After transplantation some of the pathways of differentiation open to bone marrow tissue (formation of reticular and bone tissues) are stimulated, while others (haemopoiesis) are arrested.

1,480 citations


Authors

Showing all 68238 results

NameH-indexPapersCitations
Krzysztof Matyjaszewski1691431128585
A. Gomes1501862113951
Robert J. Sternberg149106689193
James M. Tour14385991364
Alexander Belyaev1421895100796
Rainer Wallny1411661105387
I. V. Gorelov1391916103133
António Amorim136147796519
Halina Abramowicz134119289294
Grigory Safronov133135894610
Elizaveta Shabalina133142192273
Alexander Zhokin132132386842
Eric Conte132120684593
Igor V. Moskalenko13254258182
M. Davier1321449107642
Network Information
Related Institutions (5)
Russian Academy of Sciences
417.5K papers, 4.5M citations

96% related

Saint Petersburg State University
53.4K papers, 1.1M citations

93% related

Russian Academy
17.7K papers, 340.7K citations

88% related

National Academy of Sciences of Ukraine
59.4K papers, 573.4K citations

87% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023541
20221,582
20217,040
20208,673
20198,296
20187,187