scispace - formally typeset
Search or ask a question
Institution

Moscow State University

EducationMoscow, Russia
About: Moscow State University is a education organization based out in Moscow, Russia. It is known for research contribution in the topics: Laser & Population. The organization has 66747 authors who have published 123358 publications receiving 1753995 citations. The organization is also known as: MSU & Lomonosov Moscow State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a quantum detection mechanism in the superconducting film carrying supercurrent was described, which incorporates growing normal domain and breaking of superconductivity by the bias current.
Abstract: We describe a novel quantum detection mechanism in the superconducting film carrying supercurrent. The mechanism incorporates growing normal domain and breaking of superconductivity by the bias current. A single photon absorbed in the film creates transient normal spot that causes redistribution of the current and, consequently, increase of the current density in superconducting areas. When the current density exceeds the critical value, the film switches into resistive state and generates the voltage pulse. Analysis shows that a submicron-wide film of conventional low temperature superconductor operated in liquid helium may detect single far-infrared photon. The amplitude and duration of the voltage pulse are in the millivolt and picosecond range, respectively. The quantitative model is presented that allows simulation of the detector utilizing this detection mechanism.

338 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider the experimental and theoretical studies of concentrated Kondo systems (CKS), Kondo lattices, substitutional solid solutions and their transition from Kondo impurity to Kondo-lattice, and intermediate valence compounds.
Abstract: This review considers the experimental and theoretical studies of concentrated Kondo systems (CKS), Kondo lattices, substitutional solid solutions and their transition from Kondo impurity to Kondo lattice, and ‘intermediate valence compounds’ which are, in fact, high T K CKS (T K is the Kondo temperature). The anomalous low temperature properties of CKS are related to the formation of the narrow (∼k B T K) high-amplitude Abrikosov-Suhl resonance E R in the vicinity of the Fermi level E F. This resonance is situated exactly at E F in low T K CKS with T K ΔCF (ΔCF is the crystal field splitting). In low T K ‘j=1/2’ CKS the condition E R=E F leads to an increase of the density of states at E F, which is large enough to induce heavy fermion superconductivity in CeCu2Si2, UBe13. We demonstrate that the transition from low T K (E R=E F) to high T K CKS (E R≠E F) might be what was formerly considered as a ‘Kondo-lattice-intermediate valence state’ transition...

338 citations

Journal ArticleDOI
TL;DR: In this paper, the size of the crystallites was found to increase from 2 nm for as-prepared samples to 30 nm for samples annealed for 3.5 hr at 920°C.

338 citations

Journal ArticleDOI
TL;DR: In this paper, the authors study the dynamics of multiple-soliton states and report the discovery of a simple mechanism that deterministically switches the soliton state by reducing the number of solitons one by one.
Abstract: Temporal dissipative Kerr solitons in optical microresonators enable the generation of ultrashort pulses and low-noise frequency combs at microwave repetition rates. They have been demonstrated in a growing number of microresonator platforms, enabling chip-scale frequency combs, optical synthesis of low-noise microwaves and multichannel coherent communications. In all these applications, accessing and maintaining a single-soliton state is a key requirement—one that remains an outstanding challenge. Here, we study the dynamics of multiple-soliton states and report the discovery of a simple mechanism that deterministically switches the soliton state by reducing the number of solitons one by one. We demonstrate this control in Si3N4 and MgF2 resonators and, moreover, we observe a secondary peak to emerge in the response of the system to a pump modulation, an effect uniquely associated with the soliton regime. Exploiting this feature, we map the multi-stability diagram of a microresonator experimentally. Our measurements show the physical mechanism of the soliton switching and provide insight into soliton dynamics in microresonators. The technique provides a method to sequentially reduce, monitor and stabilize an arbitrary state with solitons, in particular allowing for feedback stabilization of single-soliton states, which is necessary for practical applications. A study of the dynamics of so-called Kerr solitons in optical microresonators reports the discovery of a simple mechanism that permits the step-wise reduction of soliton states, one by one.

337 citations

Journal ArticleDOI
TL;DR: The main goal of the present review is to formulate a comprehensive classification of numerous successful nonaqueous biocatalytic systems based on a few fundamental principles.

336 citations


Authors

Showing all 68238 results

NameH-indexPapersCitations
Krzysztof Matyjaszewski1691431128585
A. Gomes1501862113951
Robert J. Sternberg149106689193
James M. Tour14385991364
Alexander Belyaev1421895100796
Rainer Wallny1411661105387
I. V. Gorelov1391916103133
António Amorim136147796519
Halina Abramowicz134119289294
Grigory Safronov133135894610
Elizaveta Shabalina133142192273
Alexander Zhokin132132386842
Eric Conte132120684593
Igor V. Moskalenko13254258182
M. Davier1321449107642
Network Information
Related Institutions (5)
Russian Academy of Sciences
417.5K papers, 4.5M citations

96% related

Saint Petersburg State University
53.4K papers, 1.1M citations

93% related

Russian Academy
17.7K papers, 340.7K citations

88% related

National Academy of Sciences of Ukraine
59.4K papers, 573.4K citations

87% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023541
20221,582
20217,040
20208,673
20198,296
20187,187