scispace - formally typeset
Search or ask a question
Institution

Motorola

CompanySchaumburg, Illinois, United States
About: Motorola is a company organization based out in Schaumburg, Illinois, United States. It is known for research contribution in the topics: Signal & Communications system. The organization has 27298 authors who have published 38274 publications receiving 968710 citations. The organization is also known as: Motorola, Inc. & Galvin Manufacturing Corporation.


Papers
More filters
Patent
09 Jun 1994
TL;DR: A general purpose data terminal (242) maintains a table listing (600) of caller identification information and presents this information to the device user upon receiving a page (300) from an identifiable caller as mentioned in this paper.
Abstract: A general purpose data terminal (242), such as a personal computer, portable computer, notebook computer, personal intelligent communicator, portable wireless terminal and the like employs a radio frequency (RF) modem (408) and is programed to function as a two-way acknowledge back pager. The general purpose data terminal (242) maintains a table listing (600) of caller identification information and presents this information to the device user upon receipt of a page (300) from an identifiable caller. The device user may respond to the page by selecting one of a plurality of user definable responses to be transmitted back to the caller. If no response is selected the caller will receive a message informing them of the paged party's unavailability.

154 citations

Patent
05 Nov 1990
TL;DR: In this paper, an improved method for assembling an integrated circuit component to a substrate by a solder bump interconnection that is reinforced by a polymer film is provided. But this method requires the component to be attached to a region of the substrate by the plurality of solder bump connections that create a gap between the component interface and the substrate region.
Abstract: An improved method is provided for assembling an integrated circuit component to a substrate by a solder bump interconnection that is reinforced by a polymer film. The component is attached to a region of the substrate by a plurality of solder bump interconnections that create a gap between the component interface and the substrate region. A polymer dam is applied to the region encircling the attached component spaced apart therefrom. A liquid polymer precursor material is applied to the region including the gap and is confined by the dam to prevent indiscriminate flow across the substrate. In one aspect of this invention, gas is vented from the gap through a passage in the substrate to enhance fill by the precursor liquid. In another aspect of this invention, the precursor liquid is injected into the gap through a passage in the substrate and spread outwardly therefrom. In any event, the precursor liquid infiltrates the gap about the solder interconnections and is cured to form a film that reinforces and protectively encapsulates the solder interconnections.

154 citations

Patent
06 Feb 2002
TL;DR: In this paper, an authenticated vehicle gateway authenticates the wireless gateway and the at least one in-vehicle system and processes service requests and authenticated service grants for the authenticated wireless gateway.
Abstract: A telematics communication system ( 100 ) includes an infrastructure ( 140 ) and a vehicle ( 102 ), the vehicle including at least one in-vehicle system ( 104, 118 ) and a wireless gateway ( 120 ) in communication with an authenticated vehicle gateway ( 108 ). The authenticated vehicle gateway authenticates the wireless gateway and the at least one in-vehicle system and processes service requests and authenticated service grants for the authenticated wireless gateway and the authenticated in-vehicle system.

154 citations

Journal ArticleDOI
TL;DR: In this paper, a simple model was constructed to analyze the performance of both existing and predicted future thermoelectric coolers, in an electronic packaging environment, and it was shown that they are most effective for heat loads less than approximately 100 W, but that for higher heat loads, fan air cooling actually yields a lower junction temperature.
Abstract: Utilizing refrigeration may provide the only means by which future high-performance electronic chips can be maintained below predicted maximum temperature limits. Widespread application of refrigeration in electronic packaging will remain limited, until the refrigerators can be made sufficiently small so that they can be easily incorporated within the packaging. A review of existing microscale and mesoscale refrigeration systems revealed that only thermoelectric coolers (TECs) are now commercially available in small sizes. However, existing TECs are limited by their maximum cooling power and low efficiencies. A simple model was constructed to analyze the performance of both existing and predicted future TECs, in an electronic packaging environment. Comparison with the cooling provided by an existing high-performance fan shows that they are most effective for heat loads less than approximately 100 W, but that for higher heat loads, fan air cooling actually yields a lower junction temperature. Thermal resistance between the refrigerator and the chip is not as critical as the thermal resistance between the refrigerator and the ambient air.

154 citations

Patent
13 Sep 1993
TL;DR: A copper metallization structure and process for the formation of electrical interconnections fabricated with pure copper metal is provided in this article, which includes an interface layer (22) intermediate to a dielectric layer (12), and a copper interconnect (30).
Abstract: A copper metallization structure and process for the formation of electrical interconnections fabricated with pure copper metal is provided. The metallization structure includes an interface layer (22) intermediate to a dielectric layer (12), and a copper interconnect (30). The interface layer (22) functions to adhere the copper interconnect (30) to a device substrate (10) and to prevent the diffusion of copper into underlying dielectric layers. The interconnect layer (22) is fabricated by depositing a first titanium layer (16) followed by the sequential deposition of a titanium nitride layer (18), and a second titanium layer (20). A copper layer (24) is deposited to overlie the second titanium layer (20) and an annealing step is carried out to form a copper-titanium intermetallic layer (26). The titanium nitride layer (18) functions as a diffusion barrier preventing the diffusion of copper into the underlying dielectric layer (12), and the copper titanium intermetallic layer (26) provides an adhesive material, which adheres the copper layer (24) to the device substrate ( 10). Following the formation of the intermetallic layer (26), the device surface is planarized to form a planar surface (28), and to form an inlaid copper interconnect (30).

154 citations


Authors

Showing all 27298 results

NameH-indexPapersCitations
Georgios B. Giannakis137132173517
Yonggang Huang13679769290
Chenming Hu119129657264
Theodore S. Rappaport11249068853
Chang Ming Li9789642888
John Kim9040641986
James W. Hicks8940651636
David Blaauw8775029855
Mark Harman8350629118
Philippe Renaud7777326868
Aggelos K. Katsaggelos7694626196
Min Zhao7154724549
Weidong Shi7052816368
David Pearce7034225680
Douglas L. Jones7051221596
Network Information
Related Institutions (5)
Intel
68.8K papers, 1.6M citations

93% related

Samsung
163.6K papers, 2M citations

91% related

Hewlett-Packard
59.8K papers, 1.4M citations

89% related

IBM
253.9K papers, 7.4M citations

89% related

Bell Labs
59.8K papers, 3.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20232
20229
202129
2020131
2019134
2018144