scispace - formally typeset
Search or ask a question
Institution

Motorola

CompanySchaumburg, Illinois, United States
About: Motorola is a company organization based out in Schaumburg, Illinois, United States. It is known for research contribution in the topics: Signal & Communications system. The organization has 27298 authors who have published 38274 publications receiving 968710 citations. The organization is also known as: Motorola, Inc. & Galvin Manufacturing Corporation.


Papers
More filters
Journal ArticleDOI
TL;DR: A proposed control framework for integrating factory control and equipment scheduling, supervisory control, feedback control, statistical process control, and fault detection/diagnosis in microelectronics manufacturing is presented and discussed.

236 citations

Patent
04 May 1992
TL;DR: A tamperproof arrangement for an integrated circuit device is presented in this paper, which includes a package and lid fabricated of heavy metals to prevent X-radiation or infrared detection of circuit operation.
Abstract: A tamperproof arrangement for an integrated circuit device. The arrangement includes a package and lid fabricated of heavy metals to prevent X-radiation or infrared detection of circuit operation. Sensors and control circuitry are located on the integrated circuit die itself which detect increased temperature and radiation and clear or zeroize any sensitive information included within the integrated circuit device. Electrode finger grids above and below the integrated circuit die detect physical attempts to penetrate the integrated circuit die. Critical circuit functions are segregated from non-critical functions. Power applied to the integrated circuit device is monitored and separated for critical and non-critical circuit functions.

235 citations

Patent
04 Aug 1997
TL;DR: In this article, a metal gate (20) is formed over the nitrided layer whereby the remaining composite gate dielectric has a larger physical thickness but a high performance equivalent oxide thickness (EOT).
Abstract: A method for forming a metal gate (20) structure begins by providing a semiconductor substrate (12). The semiconductor substrate (12) is cleaned to reduce trap sites. A nitrided layer (14) having a thickness of less than approximately 20 Angstroms is formed over the substrate (12). This nitrided layer prevents the formation of an oxide at the substrate interface and has a dielectric constant greater than 3.9. After the formation of the nitrided layer(14), a metal oxide layer (16) having a permittivity value of greater than roughly 8.0 is formed over the nitrided layer (14). A metal gate (20) is formed over the nitrided layer whereby the remaining composite gate dielectric (14 and 16) has a larger physical thickness but a high-performance equivalent oxide thickness (EOT).

235 citations

Patent
Priscilla Chen1
21 Dec 2001
TL;DR: In this article, a system and method for establishing a network within a plurality of interconnected and randomly geographically located nodes, such as wireless devices, is presented, where one or more cluster heads are selected within the nodes and selectively communicate with the other cluster heads and nodes.
Abstract: A system and method for establishing a network within a plurality of interconnected and randomly geographically located nodes, such as wireless devices One or more cluster heads are selected within the nodes and selectively communicate with the other cluster heads and nodes The cluster head can be a wireless device or a specific dedicated device such as a router Each cluster head determines the geographical location of that cluster head and the data-dependent nodes of the cluster head, and selectively receives and stores location information of the other cluster heads and dependent nodes to create an optimal data-routing network within the plurality of nodes

235 citations

Journal ArticleDOI
21 Sep 2000-Nature
TL;DR: Self-organization of Si nanocrystals larger than 80 Å into brick-shaped crystallites oriented along the 〈111〉 crystallographic direction is reported, which should aid the development of maskless, reproducible Si nanofabrication techniques.
Abstract: The spontaneous formation of organized nanocrystals in semiconductors has been observed1,2,3,4,5 during heteroepitaxial growth and chemical synthesis. The ability to fabricate size-controlled silicon nanocrystals encapsulated by insulating SiO2 would be of significant interest to the microelectronics industry. But reproducible manufacture of such crystals is hampered by the amorphous nature of SiO2 and the differing thermal expansion coefficients of the two materials. Previous attempts6,7,8,9,10 to fabricate Si nanocrystals failed to achieve control over their shape and crystallographic orientation, the latter property being important in systems such as Si quantum dots. Here we report the self-organization of Si nanocrystals larger than 80 A into brick-shaped crystallites oriented along the 〈111〉 crystallographic direction. The nanocrystals are formed by the solid-phase crystallization of nanometre-thick layers of amorphous Si confined between SiO2 layers. The shape and orientation of the crystallites results in relatively narrow photoluminescence, whereas isotropic particles produce qualitatively different, broad light emission. Our results should aid the development of maskless, reproducible Si nanofabrication techniques.

234 citations


Authors

Showing all 27298 results

NameH-indexPapersCitations
Georgios B. Giannakis137132173517
Yonggang Huang13679769290
Chenming Hu119129657264
Theodore S. Rappaport11249068853
Chang Ming Li9789642888
John Kim9040641986
James W. Hicks8940651636
David Blaauw8775029855
Mark Harman8350629118
Philippe Renaud7777326868
Aggelos K. Katsaggelos7694626196
Min Zhao7154724549
Weidong Shi7052816368
David Pearce7034225680
Douglas L. Jones7051221596
Network Information
Related Institutions (5)
Intel
68.8K papers, 1.6M citations

93% related

Samsung
163.6K papers, 2M citations

91% related

Hewlett-Packard
59.8K papers, 1.4M citations

89% related

IBM
253.9K papers, 7.4M citations

89% related

Bell Labs
59.8K papers, 3.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20232
20229
202129
2020131
2019134
2018144