scispace - formally typeset
Search or ask a question
Institution

Nagoya Institute of Technology

EducationNagoya, Japan
About: Nagoya Institute of Technology is a education organization based out in Nagoya, Japan. It is known for research contribution in the topics: Thin film & Catalysis. The organization has 10766 authors who have published 19140 publications receiving 255696 citations. The organization is also known as: Nagoya Kōgyō Daigaku & Nitech.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors propose the distorted current waveform whose harmonic components are in phase with the terminal voltage harmonics, which has been verified by experiments and is suitable for harmonic suppression of the voltage and current on the distribution system.
Abstract: The voltage waveform on the electric power distribution system is distorted by harmonic-producing loads. Regardless of the terminal voltage waveform with or without harmonics, the conventional current waveform of the pulsewidth-modulated converter systems connected to the power distribution system is always controlled to be sinusoidal. For harmonic suppression of the voltage and current on the distribution system, the authors propose the distorted current waveform whose harmonic components are in phase with the terminal voltage harmonics. The effectiveness of the proposed current waveform has been verified by experiments.

60 citations

Journal ArticleDOI
TL;DR: In this paper, the shape memory behavior of polymer blends consisting of thermoplastic polyurethane (PU) and crystalline poly(oxyethylene) (POE) have been investigated.
Abstract: Shape memory behavior of polymer blends consisting of thermoplastic polyurethane (PU) and crystalline poly(oxyethylene) (POE) have been investigated. PU is in a rubbery state at room temperature and has an ability to recover from a deformed temporary shape to a permanent shape by entropic elasticity, and POE has a role to fix the temporary shape by crystallization and solidification of the system. As a result, excellent shape memory properties can be obtained by blending elastic PU and crystalline POE. With increasing POE content in the blend, the shape fixity ratio below crystallization temperature was increased to almost 100%, but shape recovery above melting temperature occurred more slowly. These experimental results were reasonably described by viscoelasticity and the phase separated morphology of the PU/POE blend. The effect of changing molecular weight of POE on the shape memory behavior was not remarkable. The shape recovery behavior was found to be expressed by using a simple mechanical viscoelastic model.

60 citations

Journal ArticleDOI
TL;DR: In this paper, a semi-analytical finite element method for curved pipes is developed, where a curved center axis of the pipe elbow region is an axis (z′ axis) of the coordinate system.
Abstract: Wave propagation across a pipe elbow region is complex. Subsequent reflected and transmitted waves are largely deformed due to mode conversions at the elbow. This prevents us to date from applying guided waves to the nondestructive evaluation of meandering pipeworks. Since theoretical development of guided wave propagation in a pipe is difficult, numerical modeling techniques are used. We have introduced a semi-analytical finite element method, a special modeling technique for guided wave propagation, because ordinary finite element methods require extremely long computational times and memory for such a long-range guided wave calculation. In this study, the semi-analytical finite element method for curved pipes is developed. A curved cylindrical coordinate system is used for the curved pipe region, where a curved center axis of the pipe elbow region is an axis (z′ axis) of the coordinate system, instead of the straight axis (z axis) of the cylindrical coordinate system. Guided waves in the z′ direction are described as a superposition of orthogonal functions. The calculation region is divided only in the thickness and circumferential directions. Using this calculation technique, echoes from the back wall beyond up to four elbows are discussed.Copyright © 2003 by ASME

60 citations

Journal ArticleDOI
TL;DR: The use of a c-axis zig-zag structure consisting of multilayered c- axis 23° tilted ZnO piezoelectric films to obtain the desired longitudinal and shear wave conversion loss characteristics in the transducer is proposed.
Abstract: A method for designing frequencies and modes in ultrasonic transducers above the very-high-frequency (VHF) range is required for ultrasonic non-destructive evaluation and acoustic mass sensors. To obtain the desired longitudinal and shear wave conversion loss characteristics in the transducer, we propose the use of a c-axis zig-zag structure consisting of multilayered c-axis 23° tilted ZnO piezoelectric films. In this structure, every layer has the same thickness, and the c-axis tilt directions in odd and even layers are symmetric with respect to the film surface normal. c-axis zig-zag crystal growth was achieved by using a SiO2 low-temperature buffer layer. The frequency characteristics of the multilayered transducer were predicted using a transmission line model based on Mason's equivalent circuit. We experimentally demonstrated two types of transducers: those exciting longitudinal and shear waves simultaneously at the same frequency, and those exciting shear waves with suppressed longitudinal waves.

60 citations

Journal ArticleDOI
TL;DR: The phase analysis and oxygen release characteristics of catalytic mixed oxides in the system of CeO 2 -ZrO 2 /Al 2 O 3 heated at 800°C were described in this paper.

60 citations


Authors

Showing all 10804 results

NameH-indexPapersCitations
Luis M. Liz-Marzán13261661684
Hideo Hosono1281549100279
Shunichi Fukuzumi111125652764
Andrzej Cichocki9795241471
Kwok-Hung Chan9140644315
Kimoon Kim9041235394
Alex Martin8840636063
Manijeh Razeghi82104025574
Yuichi Ikuhara7597424224
Richard J. Cogdell7348023866
Masaaki Tanaka7186022443
Kiyotomi Kaneda6537813337
Yulin Deng6464116148
Motoo Shiro6472017786
Norio Shibata6357414469
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

97% related

Waseda University
46.8K papers, 837.8K citations

94% related

Tokyo University of Science
24.1K papers, 438K citations

94% related

Tokyo Metropolitan University
25.8K papers, 724.2K citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202272
2021631
2020718
2019701
2018764