scispace - formally typeset
Search or ask a question
Institution

Nagoya Institute of Technology

EducationNagoya, Japan
About: Nagoya Institute of Technology is a education organization based out in Nagoya, Japan. It is known for research contribution in the topics: Thin film & Turbulence. The organization has 10766 authors who have published 19140 publications receiving 255696 citations. The organization is also known as: Nagoya Kōgyō Daigaku & Nitech.


Papers
More filters
Journal ArticleDOI
TL;DR: The results show that the proposed method for removing the staircasing error can provide conservative estimates for the 99th percentile electric field in both localized and uniform exposure scenarios.
Abstract: From extremely low frequencies to intermediate frequencies, the magnitude of induced electric field inside the human body is used as the metric for human protection. The induced electric field inside the body can be computed using anatomically realistic voxel models and numerical methods such as the finite-difference or finite-element methods. The computed electric field is affected by numerical errors that occur when curved boundaries with large contrasts in electrical conductivity are approximated using a staircase grid. In order to lessen the effect of the staircase approximation error, the use of the 99th percentile electric field, i.e. ignoring the highest 1% of electric field values, is recommended in the ICNIRP guidelines. However, the 99th percentile approach is not applicable to localized exposure scenarios where the majority of significant induced electric field values may be concentrated in a small volume. In this note, a method for removing the staircasing error is proposed. Unlike the 99th percentile, the proposed method is also applicable to localized exposure scenarios. The performance of the method is first verified by comparison with the analytical solution in a layered sphere. The method is then applied for six different exposure scenarios in two anatomically realistic human head models. The results show that the proposed method can provide conservative estimates for the 99th percentile electric field in both localized and uniform exposure scenarios.

99 citations

Journal ArticleDOI
TL;DR: N‐Methylation of (R)‐1‐methyl‐6,7‐dihydroxy‐1,2,3,4‐tetrahydroisoquinoline [(R]‐salsolinol] derived from dopamine was proved by in vivo microdialysis study in the rat brain to be an essential step for these alkaloids to increase their toxicity.
Abstract: N-Methylation of (R)-1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline [(R)-salsolinol] derived from dopamine was proved by in vivo microdialysis study in the rat brain. The striatum was perfused with (R)-salsolinol and N-methylated compound was identified in the dialysate using HPLC and electrochemical detection with multichanneled electrodes. N-Methylation of (R)-salsolinol was confirmed in three other regions of the brain, the substantia nigra, hypothalamus, and hippocampus. In the substantia nigra, the amount of N-methylated (R)-salsolinol was significantly larger than in the other three regions. These results indicate that around dopaminergic neurons, particularly in the substantia nigra, (R)-salsolinol was methylated into N-methyl-(R)-salsolinol, which has a chemical structure similar to that of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, the selective dopaminergic neurotoxin. N-Methylation of tetrahydroisoquinolines and beta-carbolines have already been proven to increase their toxicity to dopaminergic neurons and N-methylation might be an essential step for these alkaloids to increase their toxicity. On the other hand, after perfusion of (R)-salsolinol, release of dopamine and 5-hydroxytryptamine was observed and inhibition of monoamine oxidase was indicated. (R)-Salsolinol and its derivatives may be candidates for being dopaminergic neurotoxins.

99 citations

Journal ArticleDOI
TL;DR: Recent understanding of ion-pumping microbial rhodopsins is reviewed in this paper, and different kinds of H+ and Cl− pumps have been found in marine bacteria, such as proteorhodopsin (PR) and Fulvimarina pelagi rhodopin (FR), respectively.
Abstract: Rhodopsins are light-sensing proteins used in optogenetics. The word "rhodopsin" originates from the Greek words "rhodo" and "opsis," indicating rose and sight, respectively. Although the classical meaning of rhodopsin is the red-colored pigment in our eyes, the modern meaning of rhodopsin encompasses photoactive proteins containing a retinal chromophore in animals and microbes. Animal and microbial rhodopsins possess 11-cis and all-trans retinal, respectively, to capture light in seven transmembrane α-helices, and photoisomerizations into all-trans and 13-cis forms, respectively, initiate each function. Ion-transporting proteins can be found in microbial rhodopsins, such as light-gated channels and light-driven pumps, which are the main tools in optogenetics. Light-driven pumps, such as archaeal H(+) pump bacteriorhodopsin (BR) and Cl(-) pump halorhodopsin (HR), were discovered in the 1970s, and their mechanism has been extensively studied. On the other hand, different kinds of H(+) and Cl(-) pumps have been found in marine bacteria, such as proteorhodopsin (PR) and Fulvimarina pelagi rhodopsin (FR), respectively. In addition, a light-driven Na(+) pump was found, Krokinobacter eikastus rhodopsin 2 (KR2). These light-driven ion-pumping microbial rhodopsins are classified as DTD, TSA, DTE, NTQ, and NDQ rhodopsins for BR, HR, PR, FR, and KR2, respectively. Recent understanding of ion-pumping microbial rhodopsins is reviewed in this paper.

99 citations

Journal ArticleDOI
TL;DR: The organocatalyzed regioselective allylic trifluoromethylation of Morita-Baylis-Hillman adducts using Ruppert-Prakash reagent was achieved in high to excellent yields via a successive S(N)2'/S(N).2' mode for the first time.

99 citations

Patent
14 Feb 2006
TL;DR: In this article, a neural network type of apparatus is provided to detect an internal state of a secondary battery implemented in a battery system, consisting of a detecting unit, a producing unit and an estimating unit.
Abstract: A neural network type of apparatus is provided to detect an internal state of a secondary battery implemented in a battery system. The apparatus comprises a detecting unit, producing unit and estimating unit. The detecting unit detects electric signals indicating an operating state of the battery. The producing unit produces, using the electric signals, an input parameter required for estimating the internal state of the battery. The input parameter reflects calibration of a present charged state of the battery which is attributable to at least one of a present degraded state of the battery and a difference in types of the battery. The estimating unit estimates an output parameter indicating the charged state of the battery by applying the input parameter to neural network calculation.

99 citations


Authors

Showing all 10804 results

NameH-indexPapersCitations
Luis M. Liz-Marzán13261661684
Hideo Hosono1281549100279
Shunichi Fukuzumi111125652764
Andrzej Cichocki9795241471
Kwok-Hung Chan9140644315
Kimoon Kim9041235394
Alex Martin8840636063
Manijeh Razeghi82104025574
Yuichi Ikuhara7597424224
Richard J. Cogdell7348023866
Masaaki Tanaka7186022443
Kiyotomi Kaneda6537813337
Yulin Deng6464116148
Motoo Shiro6472017786
Norio Shibata6357414469
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

97% related

Waseda University
46.8K papers, 837.8K citations

94% related

Tokyo University of Science
24.1K papers, 438K citations

94% related

Tokyo Metropolitan University
25.8K papers, 724.2K citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202272
2021631
2020718
2019701
2018764