scispace - formally typeset
Search or ask a question
Institution

Nagoya Institute of Technology

EducationNagoya, Japan
About: Nagoya Institute of Technology is a education organization based out in Nagoya, Japan. It is known for research contribution in the topics: Thin film & Turbulence. The organization has 10766 authors who have published 19140 publications receiving 255696 citations. The organization is also known as: Nagoya Kōgyō Daigaku & Nitech.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel electrophilic-type trifluoromethanesulfonyl hypervalent iodonium ylide reagent was designed and reacted well with various nucleophiles to afford the desired CF3S-substituted products.
Abstract: A novel electrophilic-type trifluoromethylthiolation reagent, a trifluoromethanesulfonyl hypervalent iodonium ylide, was designed and reacted well with various nucleophiles to afford the desired CF3S-substituted products. In situ reduction of the trifluoromethanesulfonyl group to give the trifluoromethylthio group, which is the key step in this process, was realized in the presence of copper(I) chloride.

274 citations

Journal ArticleDOI
TL;DR: In this article, the structure of titanium dioxide films with the anatase and rutile single phase was studied by X-ray diffraction and transmission electron microscopy (TEM), and the optical properties were evaluated with spectroscopic ellipsometry (SE).

272 citations

Journal ArticleDOI
TL;DR: The variability in the electric fields is related to each individual's anatomical features and can only be controlled using detailed image processing, and age was found to have a slight negative effect on the electric field, which might have implications on tDCS studies on aging brains.

271 citations

Journal ArticleDOI
TL;DR: In this article, a low-rigidity type titanium alloy, Ti-29Nb-13Ta-4.6Zr was designed, and then the practical level ingot of the alloy was successfully fabricated by Levicast method.
Abstract: The low rigidity type titanium alloy, Ti–29Nb–13Ta–4.6Zr was designed, and then the practical level ingot of the alloy was successfully fabricated by Levicast method. The mechanical and biological compatibilities of the alloys were investigated in this study. The following results were obtained. The mechanical performance of tensile properties and fatigue strength of the alloy are equal to or greater than those of conventional biomedical Ti–6Al–4V ELI. Young’s modulus of the alloy is much lower than that of Ti–6Al–4V ELI, and increases with the precipitation of α phase or ω phase in the β matrix phase. The compatibility of the alloy with bone of the alloy is excellent. Low rigidity of the alloy is effective to enhance the healing of bone fracture and remodeling of bone. The bioactive coating layer of hydroxyapatite can be formed on the alloy.

271 citations


Authors

Showing all 10804 results

NameH-indexPapersCitations
Luis M. Liz-Marzán13261661684
Hideo Hosono1281549100279
Shunichi Fukuzumi111125652764
Andrzej Cichocki9795241471
Kwok-Hung Chan9140644315
Kimoon Kim9041235394
Alex Martin8840636063
Manijeh Razeghi82104025574
Yuichi Ikuhara7597424224
Richard J. Cogdell7348023866
Masaaki Tanaka7186022443
Kiyotomi Kaneda6537813337
Yulin Deng6464116148
Motoo Shiro6472017786
Norio Shibata6357414469
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

97% related

Waseda University
46.8K papers, 837.8K citations

94% related

Tokyo University of Science
24.1K papers, 438K citations

94% related

Tokyo Metropolitan University
25.8K papers, 724.2K citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202272
2021631
2020718
2019701
2018764