scispace - formally typeset
Search or ask a question

Showing papers by "Nagoya University published in 2006"


Journal ArticleDOI
TL;DR: In this article, the authors simulate the growth of galaxies and their central supermassive black holes by implementing a suite of semi-analytic models on the output of the Millennium Run, a very large simulation of the concordance A cold dark matter cosmogony.
Abstract: We simulate the growth of galaxies and their central supermassive black holes by implementing a suite of semi-analytic models on the output of the Millennium Run, a very large simulation of the concordance A cold dark matter cosmogony. Our procedures follow the detailed assembly history of each object and are able to track the evolution of all galaxies more massive than the Small Magellanic Cloud throughout a volume comparable to that of large modern redshift surveys. In this first paper we supplement previous treatments of the growth and activity of central black holes with a new model for 'radio' feedback from those active galactic nuclei that lie at the centre of a quasi-static X-ray-emitting atmosphere in a galaxy group or cluster. We show that for energetically and observationally plausible parameters such a model can simultaneously explain: (i) the low observed mass drop-out rate in cooling flows; (ii) the exponential cut-off at the bright end of the galaxy luminosity function; and (iii) the fact that the most massive galaxies tend to be bulge-dominated systems in clusters and to contain systematically older stars than lower mass galaxies. This success occurs because static hot atmospheres form only in the most massive structures, and radio feedback (in contrast, for example, to supernova or starburst feedback) can suppress further cooling and star formation without itself requiring star formation. We discuss possible physical models that might explain the accretion rate scalings required for our phenomenological 'radio mode' model to be successful.

1,997 citations


Journal ArticleDOI
26 Oct 2006-Nature
TL;DR: The genome sequence of the honeybee Apis mellifera is reported, suggesting a novel African origin for the species A. melliferA and insights into whether Africanized bees spread throughout the New World via hybridization or displacement.
Abstract: Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more slowly, and is more similar to vertebrates for circadian rhythm, RNA interference and DNA methylation genes, among others. Furthermore, A. mellifera has fewer genes for innate immunity, detoxification enzymes, cuticle-forming proteins and gustatory receptors, more genes for odorant receptors, and novel genes for nectar and pollen utilization, consistent with its ecology and social organization. Compared to Drosophila, genes in early developmental pathways differ in Apis, whereas similarities exist for functions that differ markedly, such as sex determination, brain function and behaviour. Population genetics suggests a novel African origin for the species A. mellifera and insights into whether Africanized bees spread throughout the New World via hybridization or displacement.

1,673 citations


Journal ArticleDOI
Jennifer K. Adelman-McCarthy1, Marcel A. Agüeros2, S. Allam3, S. Allam1  +149 moreInstitutions (47)
TL;DR: The fourth data release of the Sloan Digital Sky Survey (SDSS) as discussed by the authors includes all survey-quality data taken through 2004 June, including five-band photometric data for 180 million objects selected over 6670 deg2 and 673,280 spectra of galaxies, quasars and stars selected from 4783 deg2 of those imaging data using the standard SDSS target selection algorithms.
Abstract: This paper describes the Fourth Data Release of the Sloan Digital Sky Survey (SDSS), including all survey-quality data taken through 2004 June. The data release includes five-band photometric data for 180 million objects selected over 6670 deg2 and 673,280 spectra of galaxies, quasars, and stars selected from 4783 deg2 of those imaging data using the standard SDSS target selection algorithms. These numbers represent a roughly 27% increment over those of the Third Data Release; all the data from previous data releases are included in the present release. The Fourth Data Release also includes an additional 131,840 spectra of objects selected using a variety of alternative algorithms, to address scientific issues ranging from the kinematics of stars in the Milky Way thick disk to populations of faint galaxies and quasars.

1,110 citations


Journal ArticleDOI
TL;DR: In this paper, a general scheme for modified $f(R)$ gravity reconstruction from any realistic Friedmann-Robertson-Walker (FRW) cosmology is developed, where the modified gravities are expressed implicitly (in terms of special functions) with late-time asymptotics of known type (for instance, the model with negative and positive powers of curvature).
Abstract: We develop the general scheme for modified $f(R)$ gravity reconstruction from any realistic Friedmann-Robertson-Walker (FRW) cosmology. We formulate several versions of modified gravity compatible with solar system tests where the following sequence of cosmological epochs occurs: (a) matter dominated phase (with or without usual matter), transition from deceleration to acceleration, accelerating epoch consistent with recent WMAP data, (b) $\ensuremath{\Lambda}\mathrm{CDM}$ cosmology without cosmological constant. As a rule, such modified gravities are expressed implicitly (in terms of special functions) with late-time asymptotics of known type (for instance, the model with negative and positive powers of curvature). In the alternative approach, it is demonstrated that even simple versions of modified gravity may lead to the unification of matter dominated and accelerated phases at the price of the introduction of compensating dark energy.

985 citations


Journal ArticleDOI
TL;DR: In this article, a unified approach to early-time and late-time universe based on phantom cosmology is proposed, where gravity-scalar system which contains usual potential and scalar coupling function in front of kinetic term is considered.
Abstract: The unifying approach to early-time and late-time universe based on phantom cosmology is proposed. We consider gravity-scalar system which contains usual potential and scalar coupling function in front of kinetic term. As a result, the possibility of phantom–non-phantom transition appears in such a way that universe could have effectively phantom equation of state at early time as well as at late time. In fact, the oscillating universe may have several phantom and non-phantom phases. Role in each of two phase and can be absorbed into the redefinition of the scalar field. Right on the transition point, however, the factor cannot be absorbed into the redefinition and play the role to connect two phases smoothly. Holographic dark energy where infrared cutoff is identified with combination of FRW parameters: Hubble constant, particle and future horizons, cosmological constant and universe life-time (if finite). Depending on the specific choice of the model the number of interesting effects occur: the possibility to solve the coincidence problem, crossing of phantom divide and unification of early-time inflationary and late-time accelerating phantom universe. The bound for holographic entropy which decreases in phantom era is also discussed.

857 citations


Journal ArticleDOI
TL;DR: The contention that Nrf2 protein synthesized de novo after exposure to stress accumulates in the nucleus by bypassing the Keap1 gate supports the contention that the sensory mechanism of oxidative and electrophilic stresses is closely linked to the degradation mechanism of NRF2.
Abstract: The Keap1-Nrf2 system is the major regulatory pathway of cytoprotective gene expression against oxidative and/or electrophilic stresses. Keap1 acts as a stress sensor protein in this system. While Keap1 constitutively suppresses Nrf2 activity under unstressed conditions, oxidants or electrophiles provoke the repression of Keap1 activity, inducing the Nrf2 activation. However, the precise molecular mechanisms behind the liberation of Nrf2 from Keap1 repression in the presence of stress remain to be elucidated. We hypothesized that oxidative and electrophilic stresses induce the nuclear accumulation of Nrf2 by affecting the Keap1-mediated rapid turnover of Nrf2, since such accumulation was diminished by the protein synthesis inhibitor cycloheximide. While both the Cys273 and Cys288 residues of Keap1 are required for suppressing Nrf2 nuclear accumulation, treatment of cells with electrophiles or mutation of these cysteine residues to alanine did not affect the association of Keap1 with Nrf2 either in vivo or in vitro. Rather, these treatments impaired the Keap1-mediated proteasomal degradation of Nrf2. These results support the contention that Nrf2 protein synthesized de novo after exposure to stress accumulates in the nucleus by bypassing the Keap1 gate and that the sensory mechanism of oxidative and electrophilic stresses is closely linked to the degradation mechanism of Nrf2.

789 citations


Journal ArticleDOI
TL;DR: The SAGE Legacy project as discussed by the authors performed a uniform and unbiased imaging survey of the Large Magellanic Cloud (LMC; 7° × 7°) using the IRAC (3.6, 4.5, 5.8, and 8 μm) and MIPS (24, 70, and 160μm) instruments on board the Spitzer Space Telescope.
Abstract: We are performing a uniform and unbiased imaging survey of the Large Magellanic Cloud (LMC; ~7° × 7°) using the IRAC (3.6, 4.5, 5.8, and 8 μm) and MIPS (24, 70, and 160 μm) instruments on board the Spitzer Space Telescope in the Surveying the Agents of a Galaxy's Evolution (SAGE) survey, these agents being the interstellar medium (ISM) and stars in the LMC. This paper provides an overview of the SAGE Legacy project, including observing strategy, data processing, and initial results. Three key science goals determined the coverage and depth of the survey. The detection of diffuse ISM with column densities >1.2 × 10^(21) H cm^(-2) permits detailed studies of dust processes in the ISM. SAGE's point-source sensitivity enables a complete census of newly formed stars with masses >3 M_☉ that will determine the current star formation rate in the LMC. SAGE's detection of evolved stars with mass-loss rates >1 × 10^(-8) M_☉ yr^(-1) will quantify the rate at which evolved stars inject mass into the ISM of the LMC. The observing strategy includes two epochs in 2005, separated by 3 months, that both mitigate instrumental artifacts and constrain source variability. The SAGE data are nonproprietary. The data processing includes IRAC and MIPS pipelines and a database for mining the point-source catalogs, which will be released to the community in support of Spitzer proposal cycles 4 and 5. We present initial results on the epoch 1 data for a region near N79 and N83. The MIPS 70 and 160 μm images of the diffuse dust emission of the N79/N83 region reveal a similar distribution to the gas emissions, especially the H I 21 cm emission. The measured point-source sensitivity for the epoch 1 data is consistent with expectations for the survey. The point-source counts are highest for the IRAC 3.6 μm band and decrease dramatically toward longer wavelengths, consistent with the fact that stars dominate the point-source catalogs and the dusty objects detected at the longer wavelengths are rare in comparison. The SAGE epoch 1 point-source catalog has ~4 × 10^6 sources, and more are anticipated when the epoch 1 and 2 data are combined. Using Milky Way (MW) templates as a guide, we adopt a simplified point-source classification to identify three candidate groups—stars without dust, dusty evolved stars, and young stellar objects—that offer a starting point for this work. We outline a strategy for identifying foreground MW stars, which may comprise as much as 18% of the source list, and background galaxies, which may comprise ~12% of the source list.

779 citations


Journal ArticleDOI
TL;DR: In this article, it was shown that f ( R ) -gravity can give rise to cosmological viable models compatible with a matter-dominated epoch evolving into a late accelerated phase.

732 citations


Journal ArticleDOI
TL;DR: It is shown that TNF-α is the key cytokine that stimulates extensive microglial glutamate release in an autocrine manner by up-regulating glutaminase to cause excitoneurotoxicity and it is demonstrated that the connexin 32 hemichannel of the gap junction is another main source of glutamate release from microglia besides glutamate transporters.

676 citations


Journal ArticleDOI
M. H. Ahn1, E. Aliu2, S. Andringa2, Shigeki Aoki3  +217 moreInstitutions (29)
TL;DR: In this article, measurements of {nu}{sub {mu}} disappearance in K2K, the KEK to Kamioka long-baseline neutrino oscillation experiment are presented.
Abstract: We present measurements of {nu}{sub {mu}} disappearance in K2K, the KEK to Kamioka long-baseline neutrino oscillation experiment. One-hundred and twelve beam-originated neutrino events are observed in the fiducial volume of Super-Kamiokande with an expectation of 158.1{sub -8.6}{sup +9.2} events without oscillation. A distortion of the energy spectrum is also seen in 58 single-ring muonlike events with reconstructed energies. The probability that the observations are explained by the expectation for no neutrino oscillation is 0.0015% (4.3{sigma}). In a two-flavor oscillation scenario, the allowed {delta}m{sup 2} region at sin{sup 2}2{theta}=1 is between 1.9 and 3.5x10{sup -3} eV{sup 2} at the 90% C.L. with a best-fit value of 2.8x10{sup -3} eV{sup 2}.

672 citations


Journal ArticleDOI
TL;DR: The expression of let-7 miRNAs in human colon cancer tumors and cell lines is examined, with the result that 2 of 6 cases and 1 of 3 cell lines showed reduced expression ofLet-7.
Abstract: MicroRNAs (miRNAs) are endogenously expressed RNAs, 18-25 nucleotides in length, that repress protein translation through binding to target mRNAs. miRNAs have been implicated in many cellular processes including cell proliferation, differentiation, and death. Recently, let-7 miRNAs were found to regulate human RAS oncogene expression and to be often down-regulated in human lung tumors. In this study, we examined the expression of let-7 miRNAs in human colon cancer tumors and cell lines, with the result that 2 of 6 cases and 1 of 3 cell lines showed reduced expression of let-7. When let-7 low-expressing DLD-1 human colon cancer cells were transfected with let-7a-1 precursor miRNA, which is located at chromosome 9q22.3, the cells underwent significant growth suppression. At that time, the levels of RAS and c-myc proteins were lowered after the transfection, whereas the levels of both of their mRNAs remained almost unchanged. These findings suggest the involvement of let-7 miRNA in the growth of colon cancer cells. Thus, miRNAs might provide a basis for novel RNA anti-cancer agents.

Journal ArticleDOI
26 Jan 2006-Nature
TL;DR: The detection of a cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory, and is suggested to name OGLE-2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.
Abstract: Over 170 extrasolar planets have so far been discovered, with a wide range of masses and orbital periods, but until last July no planet of Neptune's mass or less had been detected any more than 0.15 astronomical units (AU) from a normal star. (That's close — Earth is one AU from the Sun). On 11 July 2005 the OGLE Early Warning System recorded a notable event: gravitational lensing of light from a distant object by a foreground star revealed a small planet of about 5.5 Earth masses, orbiting at about 2.6 AU from the foreground star. This is the lowest known mass for an extrasolar planet orbiting a main sequence star, and its detection suggests that cool, sub-Neptune mass planets are more common than gas giants, as predicted by the favoured core accretion theory of planet formation. In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars (the most common stars in our Galaxy), this model favours the formation of Earth-mass (M⊕) to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (au), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars1,2,3,4. More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not hitherto been detected at separations of more than 0.15 au from normal stars. Here we report the discovery of a M⊕ planetary companion at a separation of au from a M⊙ M-dwarf star, where M⊙ refers to a solar mass. (We propose to name it OGLE-2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d (ref. 5), although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory.

Journal ArticleDOI
TL;DR: In this paper, it was shown that geomagnetic storms associated with high-speed streams/CIRs will have the same initial, main, and recovery phases as those associated with ICME-related magnetic storms but that the interplanetary causes are considerably different.
Abstract: [1] Solar wind fast streams emanating from solar coronal holes cause recurrent, moderate intensity geomagnetic activity at Earth. Intense magnetic field regions called Corotating Interaction Regions or CIRs are created by the interaction of fast streams with upstream slow streams. Because of the highly oscillatory nature of the GSM magnetic field z component within CIRs, the resultant magnetic storms are typically only weak to moderate in intensity. CIR-generated magnetic storm main phases of intensity Dst < −100 nT (major storms) are rare. The elongated storm “recovery” phases which are characterized by continuous AE activity that can last for up to 27 days (a solar rotation) are caused by nonlinear Alfven waves within the high streams proper. Magnetic reconnection associated with the southward (GSM) components of the Alfven waves is the solar wind energy transfer mechanism. The acceleration of relativistic electrons occurs during these magnetic storm “recovery” phases. The magnetic reconnection associated with the Alfven waves cause continuous, shallow injections of plasma sheet plasma into the magnetosphere. The asymmetric plasma is unstable to wave (chorus and other modes) growth, a feature central to many theories of electron acceleration. It is noted that the continuous AE activity is not a series of substorm expansion phases. Arguments are also presented why these AE activity intervals are not convection bays. The auroras during these continuous AE activity intervals are less intense than substorm auroras and are global (both dayside and nightside) in nature. Owing to the continuous nature of this activity, it is possible that there is greater average energy input into the magnetosphere/ionosphere system during far declining phases of the solar cycle compared with those during solar maximum. The discontinuities and magnetic decreases (MDs) associated with interplanetary Alfven waves may be important for geomagnetic activity. In conclusion, it will be shown that geomagnetic storms associated with high-speed streams/CIRs will have the same initial, main, and “recovery” phases as those associated with ICME-related magnetic storms but that the interplanetary causes are considerably different.

Journal ArticleDOI
01 Aug 2006-Urology
TL;DR: The OABSS, the sum score of four symptoms (daytime frequency, nighttime frequency, urgency, and urgency incontinence), has been developed and validated and may be a useful tool for research and clinical practice.

Journal ArticleDOI
TL;DR: It is shown that the erect leaf phenotype of a rice brassinosteroid–deficient mutant, osdwarf4-1, is associated with enhanced grain yields under conditions of dense planting, even without extra fertilizer, suggesting that regulated genetic modulation of brassinosterone biosynthesis can improve crops without the negative environmental effects of fertilizers.
Abstract: New cultivars with very erect leaves, which increase light capture for photosynthesis and nitrogen storage for grain filling, may have increased grain yields. Here we show that the erect leaf phenotype of a rice brassinosteroid-deficient mutant, osdwarf4-1, is associated with enhanced grain yields under conditions of dense planting, even without extra fertilizer. Molecular and biochemical studies reveal that two different cytochrome P450s, CYP90B2/OsDWARF4 and CYP724B1/D11, function redundantly in C-22 hydroxylation, the rate-limiting step of brassinosteroid biosynthesis. Therefore, despite the central role of brassinosteroids in plant growth and development, mutation of OsDWARF4 alone causes only limited defects in brassinosteroid biosynthesis and plant morphology. These results suggest that regulated genetic modulation of brassinosteroid biosynthesis can improve crops without the negative environmental effects of fertilizers.

Journal ArticleDOI
TL;DR: In this paper, a new, merger-driven scenario for the cosmological formation of disk galaxies at high redshifts that supplements the standard dissipational collapse model was proposed.
Abstract: The hierarchical nature of the ?CDM cosmology poses serious difficulties for the formation of disk galaxies To help resolve these issues, we describe a new, merger-driven scenario for the cosmological formation of disk galaxies at high redshifts that supplements the standard dissipational collapse model In this picture, large gaseous disks may be produced from high angular momentum mergers of systems that are gas dominated, ie, Mgas/(Mgas + M) 05 at the height of the merger Pressurization from the multiphase ISM prevents the complete conversion of gas into stars during the merger, and if enough gas remains to form a disk, the remnant eventually resembles a disk galaxy We perform numerical simulations of galaxy mergers to study how supernovae feedback strength, black hole feedback, progenitor gas fraction, merger mass ratio, and orbital geometry impact the formation of remnant disks We find that disks can build angular momentum through mergers and the degree of rotational support of the baryons in the remnant is primarily related to feedback processes associated with star formation Disk-dominated remnants are restricted to form in mergers that are gas dominated at the time of final coalescence We also show that the formation of rotationally supported stellar systems in mergers is not restricted to idealized orbits, and both gas-rich major and minor mergers can produce disk-dominated stellar remnants We suggest that the hierarchical nature of the ?CDM cosmology and the physics of the ISM may act together to form spiral galaxies by building the angular momentum of disks through gas-dominated mergers at high redshifts

Journal ArticleDOI
TL;DR: The tonoplast transporters are an integrated part of a complex cellular network that enables a plant to react properly to changing environmental conditions, to save nutrients and energy in times of plenty, and to maintain optimal metabolic conditions in the cytosol.
Abstract: Following the unequivocal demonstration that plants contain at least two types of vacuoles, scientists studying this organelle have realized that the plant 'vacuome' is far more complex than they expected. Some fully developed cells contain at least two large vacuoles, with different functions. Remarkably, even a single vacuole may be subdivided and fulfil several functions, which are supported in part by the vacuolar membrane transport systems. Recent studies, including proteomic analyses for several plant species, have revealed the tonoplast transporters and their involvement in the nitrogen storage, salinity tolerance, heavy metal homeostasis, calcium signalling, guard cell movements, and the cellular pH homeostasis. It is clear that vacuolar transporters are an integrated part of a complex cellular network that enables a plant to react properly to changing environmental conditions, to save nutrients and energy in times of plenty, and to maintain optimal metabolic conditions in the cytosol. An overview is given of the main features of the transporters present in the tonoplast of plant cells in terms of their function, regulation, and relationships with the microheterogeneity of the vacuome.

Journal ArticleDOI
TL;DR: In this paper, a general correlation between the phase stability and the elastic properties in β(body-centered cubic)-type Ti-alloys is investigated with the aid of two electronic parameters.

Journal ArticleDOI
TL;DR: The accumulation of many AIP cases shows that the concept of AIP has changed slightly to include extrapancreatic lesions and associated disorders, which suggests that the current diagnostic criteria are becoming inadequate.
Abstract: In 1961, Sarles et al.1 asked the following question regarding the particular cases of pancreatitis with hypergammaglobulinemia: “Chronic inflammatory sclerosis of the pancreas—an autoimmune pancreatic disease?” As similar cases were rarely observed, a relationship between such pancreatitis and autoimmunity was viewed skeptically during the following several decades. In 1992, Toki et al.2 have reported 4 cases with unusual diffuse irregular narrowing of the main pancreatic duct and diffuse enlargement of the entire pancreas due to lymphocyte infiltration. In 1995, Japanese investigators3 firstly proposed a concept of “autoimmune pancreatitis (AIP)”, in which the patients showed diffusely enlarged pancreas, narrowing pancreatogram, increased serum IgG, presence of autoantibodies, fibrotic changes with lymphocytic infiltration and steroidal efficacy. Thereafter, many AIP cases have been reported from Japan, and AIP has been accepted as a new clinical entity.4,5 The histopathological findings of AIP show massive infiltration of lymphoplasmacytes with fibrosis, which is consistent with lymphoplasmacytic sclerosing pancreatitis (LPSP).6 Many Japanese investigators have paid great attention to AIP, especially with regard to its unique pancreatic images,2 IgG4,7 disease-associated autoantibodies,8 extrapancreatic lesions,6,9–14 and steroidal efficacy.14,15 Currently in Japan, diagnosis of AIP is based on the “diagnostic criteria 2002 of autoimmune pancreatitis”16 proposed by the Japan Pancreas Society. However, the accumulation of many AIP cases shows that the concept of AIP has changed slightly to include extrapancreatic lesions and associated disorders, which suggests that the current diagnostic criteria are becoming inadequate. In 2003, the Research Committee of Intractable Diseases of the Pancreas, supported by the Japanese Ministry of Health, Labour and Welfare (Chairman, M. Otsuki), began to review the current diagnostic criteria in light of recently acquired information and knowledge. The team organized a working group (WG), consisting of the team members and researchers specializing in autoimmune pancreatitis, to develop a proposal for the revision of the current diagnostic criteria. On 7 October 2005 and 22 April 2006, the Research Committee of Intractable Diseases of the Pancreas and the Japan Pancreas Society jointly held open forums to discuss the proposed amendments. This report describes the background of the proposed amendments and the final proposal for the revised version of the clinical diagnostic criteria of AIP.

Journal ArticleDOI
01 Jun 2006-Nature
TL;DR: This record of the Neogene reveals cooling of the Arctic that was synchronous with the expansion of Greenland ice and East Antarctic ice and supporting arguments for bipolar symmetry in climate change.
Abstract: The history of the Arctic Ocean during the Cenozoic era (0–65 million years ago) is largely unknown from direct evidence. Here we present a Cenozoic palaeoceanographic record constructed from >400 m of sediment core from a recent drilling expedition to the Lomonosov ridge in the Arctic Ocean. Our record shows a palaeoenvironmental transition from a warm ‘greenhouse’ world, during the late Palaeocene and early Eocene epochs, to a colder ‘icehouse’ world influenced by sea ice and icebergs from the middle Eocene epoch to the present. For the most recent ~14 Myr, we find sedimentation rates of 1–2 cm per thousand years, in stark contrast to the substantially lower rates proposed in earlier studies; this record of the Neogene reveals cooling of the Arctic that was synchronous with the expansion of Greenland ice (~3.2 Myr ago) and East Antarctic ice (~14 Myr ago). We find evidence for the first occurrence of ice-rafted debris in the middle Eocene epoch (~45 Myr ago), some 35 Myr earlier than previously thought; fresh surface waters were present at ~49 Myr ago, before the onset of ice-rafted debris. Also, the temperatures of surface waters during the Palaeocene/Eocene thermal maximum (~55 Myr ago) appear to have been substantially warmer than previously estimated. The revised timing of the earliest Arctic cooling events coincides with those from Antarctica, supporting arguments for bipolar symmetry in climate change.

Journal ArticleDOI
TL;DR: In this article, the formation of the first generation of stars in the standard cold dark matter model was studied using a very high resolution cosmological hydrodynamic simulation that achieves a dynamic range of ~1010 in length scale.
Abstract: We study the formation of the first generation of stars in the standard cold dark matter model. We use a very high resolution cosmological hydrodynamic simulation that achieves a dynamic range of ~1010 in length scale. With accurate treatment of atomic and molecular physics, including the effect of molecular line opacities and cooling by collision-induced continuum emission, it allows us to study the chemothermal evolution of primordial gas clouds to densities up to ρ ~ 2 × 10-8 g cm-3 (nH ~ 1016 cm-3) without assuming any a priori equation of state, an improvement of 6 orders of magnitude over previous three-dimensional calculations. We study the evolution of a primordial star-forming gas cloud in the cosmological simulation in detail. The cloud core becomes marginally unstable against chemothermal instability when the gas cooling rate is increased owing to three-body molecule formation. However, since the core is already compact at that point, runaway cooling simply leads to fast condensation to form a single protostellar seed. During the final dynamical collapse, small angular momentum material collapses faster than the rest of the gas and selectively sinks inward. Consequently, the central regions have little specific angular momentum, and rotation does not halt collapse. We, for the first time, obtain an accurate gas mass accretion rate within a 10 M☉ innermost region around the protostar. We carry out protostellar evolution calculations using the obtained accretion rate. The resulting mass of the first star when it reaches the zero-age main sequence is MZAMS ~ 100 M☉, and less (60 M☉) for substantially reduced accretion rates.

Journal ArticleDOI
TL;DR: It is demonstrated that auxin negatively regulates local CK biosynthesis in the nodal stem by controlling the expression level of the pea (Pisum sativum L.) gene adenosine phosphate-isopentenyltransferase (PsIPT), which encodes a key enzyme in CK biosynthesized.
Abstract: In intact plants, the shoot apex grows predominantly and inhibits outgrowth of axillary buds. After decapitation of the shoot apex, outgrowth of axillary buds begins. This phenomenon is called an apical dominance. Although the involvement of auxin, which represses outgrowth of axillary buds, and cytokinin (CK), which promotes outgrowth of axillary buds, has been proposed, little is known about the underlying molecular mechanisms. In the present study, we demonstrated that auxin negatively regulates local CK biosynthesis in the nodal stem by controlling the expression level of the pea (Pisum sativum L.) gene adenosine phosphate-isopentenyltransferase (PsIPT), which encodes a key enzyme in CK biosynthesis. Before decapitation, PsIPT1 and PsIPT2 transcripts were undetectable; after decapitation, they were markedly induced in the nodal stem along with accumulation of CK. Expression of PsIPT was repressed by the application of indole-3-acetic acid (IAA). In excised nodal stem, PsIPT expression and CK levels also increased under IAA-free conditions. Furthermore, beta-glucuronidase expression, under the control of the PsIPT2 promoter region in transgenic Arabidopsis, was repressed by an IAA. Our results indicate that in apical dominance one role of auxin is to repress local biosynthesis of CK in the nodal stem and that, after decapitation, CKs, which are thought to be derived from the roots, are locally biosynthesized in the nodal stem rather than in the roots.

Journal ArticleDOI
TL;DR: PVE has the potential benefit for patients with advanced biliary cancer who are to undergo extended, complex hepatectomy, and further improvements in surgical techniques and refinements in perioperative management are necessary to make difficult hepatobiliary resections safer.
Abstract: Objective:To assess clinical benefit of portal vein embolization (PVE) before extended, complex hepatectomy for biliary cancer.Summary Background Data:Many investigators have addressed clinical utility of PVE before simple hepatectomy for metastatic liver cancer or hepatocellular carcinoma, but few

Journal ArticleDOI
11 Aug 2006-Science
TL;DR: In this paper, a modified 12-amino acid peptide (MCLV3) was derived from a conserved motif in the CLV3 sequence, which was shown to induce shoot and root meristem consumption.
Abstract: The Arabidopsis CLAVATA3 (CLV3) gene encodes a stem cell-specific protein presumed to be a precursor of a secreted peptide hormone. Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) applied to in situ Arabidopsis tissues determined the structure of a modified 12-amino acid peptide (MCLV3), which was derived from a conserved motif in the CLV3 sequence. Synthetic MCLV3 induced shoot and root meristem consumption as cells differentiated into other organs, displaying the typical phenotype of transgenic plants overexpressing CLV3. These results suggest that the functional peptide of CLV3 is MCLV3.

Journal ArticleDOI
J. P. Cravens1, K. Abe2, T. Iida2, K. Ishihara2  +147 moreInstitutions (34)
TL;DR: The results of the second phase of the Super-Kamiokande solar neutrino measurement are presented and compared to the first phase in this paper, showing no evidence of systematic tendencies between the first and second phases.
Abstract: The results of the second phase of the Super-Kamiokande solar neutrino measurement are presented and compared to the first phase. The solar neutrino flux spectrum and time variation as well as oscillation results are statistically consistent with the first phase and do not show spectral distortion. The time-dependent flux measurement of the combined first and second phases coincides with the full period of solar cycle 23 and shows no correlation with solar activity. The measured {sup 8}B total flux is (2.38{+-}0.05(stat.){sub -0.15}{sup +0.16}(sys.))x10{sup 6} cm{sup -2} s{sup -1} and the day-night difference is found to be (-6.3{+-}4.2(stat.){+-}3.7(sys.))%. There is no evidence of systematic tendencies between the first and second phases.

Journal ArticleDOI
TL;DR: The authors estimated the intake of caffeine-containing beverages in a community-based survey in Japan and measured the 5-year incidence of diabetes, finding greater intake of green tea or coffee was associated with a reduced incidence of Diabetes.
Abstract: In this retrospective cohort study, drinking more green tea and coffee was associated with a reduced risk for diabetes. Drinking black or oolong teas was not associated with the risk for diabetes. ...

Journal ArticleDOI
TL;DR: In this paper, the formation of the first generation of stars in the standard cold dark matter model was studied using a very high-resolution hydordynamic simulation, achieving a dynamic range of 10^{10} in length scale.
Abstract: We study the formation of the first generation of stars in the standard cold dark matter model, using a very high-resolution hydordynamic simulations. Our simulation achieves a dynamic range of 10^{10} in length scale. With accurate treatment of atomic and molecular physics, it allows us to study the chemo-thermal evolution of primordial gas clouds to densities up to n = 10^{16}/cc without assuming any a priori equation of state; a six orders of magnitudes improvement over previous three-dimensional calculations. All the relevant atomic and molecular cooling and heating processes, including cooling by collision-induced continuum emission, are implemented. For calculating optically thick H2 cooling at high densities, we use the Sobolev method. To examine possible gas fragmentation owing to thermal instability, we compute explicitly the growth rate of isobaric perturbations. We show that the cloud core does not fragment in either the low-density or high-density regimes. We also show that the core remains stable against gravitational deformation and fragmentation. We obtain an accurate gas mass accretion rate within a 10 Msun innermost region around the protostar. The protostar is accreting the surrounding hot gas at a rate of 0.001-0.01 Msun/yr. From these findings we conclude that primordial stars formed in early minihalos are massive. We carry out proto-stellar evolution calculations using the obtained accretion rate. The resulting mass of the first star is M_ZAMS = 60-100 Msun, with the exact mass dependent on the actual accretion rate.

Journal ArticleDOI
TL;DR: The results demonstrated that imatinib-combined regimen is effective and feasible for newly diagnosed BCR-ABL-positive ALL, and a major potential of this treatment is recognized.
Abstract: Purpose A novel therapeutic approach is urgently needed for BCR-ABL–positive acute lymphoblastic leukemia (ALL). In this study, we assessed the efficacy and feasibility of chemotherapy combined with imatinib. Patients and Methods A phase II study of imatinib-combined chemotherapy was conducted for newly diagnosed BCR-ABL–positive ALL in adults. Eighty patients were entered into the trial between September 2002 and January 2005. Results Remission induction therapy resulted in complete remission (CR) in 77 patients (96.2%), resistant disease in one patient, and early death in two patients, as well as polymerase chain reaction negativity of bone marrow in 71.3%. The profile and incidence of severe toxicity were not different from those associated with our historic chemotherapy-alone regimen. Relapse occurred in 20 patients after median CR duration of 5.2 months. Allogeneic hematopoietic stem-cell transplantation (HSCT) was performed for 49 patients, 39 of whom underwent transplantation during their first CR....

Journal ArticleDOI
TL;DR: In this article, the cosmological effects of modified gravity with string curvature corrections added to the Einstein-Hilbert action in the presence of a dynamically evolving scalar field coupled to Riemann invariants are investigated.
Abstract: In this paper we investigate the cosmological effects of modified gravity with string curvature corrections added to the Einstein-Hilbert action in the presence of a dynamically evolving scalar field coupled to Riemann invariants. The scenario exhibits several features of cosmological interest for the late universe. We show that higher-order stringy corrections can lead to a class of dark energy models consistent with recent observations. The models can give rise to quintessence without recourse to a scalar field potential. The detailed treatment of the reconstruction program for general scalar-Gauss-Bonnet gravity is presented for any given cosmology. The explicit examples of reconstructed scalar potentials are given for an accelerated (quintessence, cosmological constant, or phantom) universe. Finally, the relation with modified $F(G)$ gravity is established at the classical level and is extended to include third order terms on the curvature.

Journal ArticleDOI
TL;DR: All three AtGID1s functioned as GA receptors in Arabidopsis, and the expression of each AtG ID1 clone in the rice gid1-1 mutant rescued the GA-insensitive dwarf phenotype.
Abstract: Three gibberellin (GA) receptor genes (AtGID1a, AtGID1b and AtGID1c), each an ortholog of the rice GA receptor gene (OsGID1), were cloned from Arabidopsis, and the characteristics of their recombinant proteins were examined. The GA-binding activities of the three recombinant proteins were confirmed by an in vitro assay. Biochemical analyses revealed similar ligand selectivity among the recombinants, and all recombinants showed higher affinity to GA(4) than to other GAs. AtGID1b was unique in its binding affinity to GA(4) and in its pH dependence when compared with the other two, by only showing binding in a narrow pH range (pH 6.4-7.5) with 10-fold higher affinity (apparent K(d) for GA(4) = 3 x 10(-8) m) than AtGID1a and AtGID1c. A two-hybrid yeast system only showed in vivo interaction in the presence of GA(4) between each AtGID1 and the Arabidopsis DELLA proteins (AtDELLAs), negative regulators of GA signaling. For this interaction with AtDELLAs, AtGID1b required only one-tenth of the amount of GA(4) that was necessary for interaction between the other AtGID1s and AtDELLAs, reflecting its lower K(d) value. AtDELLA boosted the GA-binding activity of AtGID1 in vitro, which suggests the formation of a complex between AtDELLA and AtGID1-GA that binds AtGID1 to GA more tightly. The expression of each AtGID1 clone in the rice gid1-1 mutant rescued the GA-insensitive dwarf phenotype. These results demonstrate that all three AtGID1s functioned as GA receptors in Arabidopsis.