scispace - formally typeset
Search or ask a question
Institution

Nanjing Tech University

EducationNanjing, China
About: Nanjing Tech University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Catalysis & Membrane. The organization has 21827 authors who have published 21794 publications receiving 364050 citations. The organization is also known as: Nangongda & Nánjīng Gōngyè Dàxúe.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the feasibility of assembling an Al-ion capacitor with good electrochemical performance is demonstrated by using a composite of MoO3 nanotubes coated by a conductive polypyrrole (PPy@MoO3) as an anode, which functions via a redox intercalation/deintercalation of Al3+ ions in aqueous solution.
Abstract: Electrochemical capacitors are becoming promising energy conversion/storage and power output devices. However, high cost and low energy density are two serious disadvantages. By integrating the advantages of Li-/Na-ion batteries and electrochemical capacitors, Li-/Na-ion capacitors have been explored recently. Al is very cheap and is the most abundant metal element on the earth. There are few reports on Al-ion capacitors due to the challenges in finding a suitable anode with large capacitance and good rate performance. Here, the feasibility of assembling an Al-ion capacitor with good electrochemical performance is demonstrated. The Al-ion capacitor is assembled by using a composite of MoO3 nanotubes coated by a conductive polypyrrole (PPy@MoO3) as an anode, which functions via a redox intercalation/deintercalation of Al3+ ions in aqueous solution. It delivers a capacitance of 693 F g−1, about 3 times higher than that of electrode materials for sodium-ion capacitors in aqueous solution. Combined with an activated carbon (AC) cathode, the Al-ion capacitor presents an energy density of 30 W h kg−1 and an excellent cycling life with 93% capacitance retention after 1800 cycles. This finding provides another energy storage device with low cost and promotes the application of capacitors.

116 citations

Journal ArticleDOI
TL;DR: In this paper, the crystal structure, electrical conductivity, sintering behavior and oxygen desorption property of the oxides were studied by X-ray diffraction (XRD), four-probe direct current (DC) conductivity and environmental scanning electron microscopy (ESEM) technologies, respectively.

116 citations

Journal ArticleDOI
TL;DR: The phase composition, morphology, element composition and saturation magnetization of the alloys were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) as mentioned in this paper.

116 citations

Journal ArticleDOI
TL;DR: In this paper, perovskite-type La1-xKxFeO3-δ nanotubes were prepared for efficient soot oxidation by a simple electrospinning technique following calcination.
Abstract: Perovskite-type macro/mesoporous nanotube shows large specific surface area and high utilization of catalytic sites, which gives rise to the enhancement of catalytic activity and broaden their application. In this work, perovskite-type La1-xKxFeO3-δ nanotubes were prepared for efficient soot oxidation by a simple electrospinning technique following calcination. The as-prepared samples were characterized by XRD, FI-IR, FE-SEM, TEM, XPS, N2 adsorption-desorption, H2-TPR and O2-TPD techniques to investigate the physical-chemical properties. A certain amount of K+ doped in to LaFeO3-δ nanotubes sample could inhibit the growth of crystallites during the calcination at a high temperature, which could prevent the destruction of macro/mesoporous tubular structure and contribute to the more contact between soot particles and active sites. Meanwhile, it could also bring about the higher oxygen vacancy density responsible for the enhancement of redox abilities. However, excessive doping of K+ could lead to the collapsing of macro/mesoporous tubular structure, ascribable to the formation of low-melting compounds or eutectics with other components of the catalyst, which would have a negative influence on the catalytic performance. The performance for soot catalytic oxidation was evaluated in a temperature programmed oxidation device using O2 (without or with NO) as oxidant. Among the as-prepared catalysts, the well-structured La0.8K0.2FeO3-δ nanotubes catalyst is the best candidate for soot removal.

116 citations

Journal ArticleDOI
TL;DR: Core-shell phosphorescent nanoparticles were used to detect intracellular ClO– via ratiometric and photoluminescence lifetime imaging.
Abstract: We report a ratiometric phosphorescence sensory system for hypochlorite (ClO-) based on core-shell structured silica nanoparticles. Two phosphorescent iridium(iii) complexes were immobilised in the inner solid core and outer mesoporous layer of the nanoparticles, respectively. The former is insensitive to ClO- and thus serves as an internal standard to increase the accuracy and precision, while the latter exhibits a specific and significant luminogenic response to ClO-, providing high selectivity and sensitivity. Upon exposure to ClO-, the nanoparticles display a sharp luminescence colour change from blue to red. Additionally, intracellular detection of exogenous and endogenous ClO- has been demonstrated via ratiometric imaging and photoluminescence lifetime imaging microscopy. Compared to intensity-based sensing, ratiometric and lifetime-based measurements are independent of the probe concentration and are thus less affected by external influences, especially in intracellular applications.

116 citations


Authors

Showing all 22047 results

NameH-indexPapersCitations
Yi Chen2174342293080
Richard H. Friend1691182140032
Hua Zhang1631503116769
Wei Huang139241793522
Jian Zhou128300791402
Haiyan Wang119167486091
Jian Liu117209073156
Lain-Jong Li11362758035
Hong Wang110163351811
Jun-Jie Zhu10375441655
Stefan Kaskel10170536201
Hong Liu100190557561
Dirk De Vos9664233214
Peng Li95154845198
Feng Liu95106738478
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

94% related

Tianjin University
79.9K papers, 1.2M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Nankai University
51.8K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023125
2022502
20212,924
20202,572
20192,340
20181,967