scispace - formally typeset
Search or ask a question
Institution

Nanjing Tech University

EducationNanjing, China
About: Nanjing Tech University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Catalysis & Membrane. The organization has 21827 authors who have published 21794 publications receiving 364050 citations. The organization is also known as: Nangongda & Nánjīng Gōngyè Dàxúe.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, synthesized two-dimensional Ti3C2Tx MXene nanosheets were incorporated into chitosan (CS) to fabricate a new MXene/CS mixed-matrix membrane used for solvent dehydration via pervaporation process.

114 citations

Journal ArticleDOI
TL;DR: A new organic dye (FD-9) derived from 1,8-naphthalimide is synthesized and shows significant aggregation induced emission (AIE) characteristics and excellent photostability and low toxicity.

114 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported that monodispersed nanoscale NaYF4:Ln3+ nanoparticles can also be an excellent persistent luminescent (PersL) material.
Abstract: NaYF4:Ln3+, due to its outstanding upconversion characteristics, has become one of the most important luminescent nanomaterials in biological imaging, optical information storage, and anticounterfeiting applications. However, the large specific surface area of NaYF4:Ln3+ nanoparticles generally leads to serious nonradiative transitions, which may greatly hinder the discovery of new optical functionality with promising applications. In this paper, we report that monodispersed nanoscale NaYF4:Ln3+, unexpectedly, can also be an excellent persistent luminescent (PersL) material. The NaYF4:Ln3+ nanoparticles with surface-passivated core–shell structures exhibit intense X-ray-charged PersL and narrow-band emissions tunable from 480 to 1060 nm. A mechanism for PersL in NaYF4:Ln3+ is proposed by means of thermoluminescence measurements and host-referred binding energy (HRBE) scheme, which suggests that some lanthanide ions (such as Tb) may also act as effective electron traps to achieve intense PersL. The uniform and spherical NaYF4:Ln3+ nanoparticles are dispersible in solvents, thus enabling many applications that are not accessible for traditional PersL phosphors. A new 3-dimensional (2 dimensions of planar space and 1 dimension of wavelength) optical information-storage application is demonstrated by inkjet-printing multicolor PersL nanoparticles. The multicolor persistent luminescence, as an emerging and promising emissive mode in NaYF4:Ln3+, will provide great opportunities for nanomaterials to be applied to a wider range of fields. Core-shelled nanoparticles NaYF4:Ln3+@NaYF4 with multicolor narrow-band persistent luminescence enable a new multidimensional optical information-storage technology.

114 citations

Journal ArticleDOI
Abstract: It is believed that a TiN coating can increase the electrical conductivity, and consequently the performance, of an electrode. In this work, a simple one-step synthesis of nitrogen- and TiN-modified Li4Ti5O12, i.e. solid-state reaction of Li2CO3 and TiO2 anatase in an ammonia-containing atmosphere, is introduced. The reducing ammonia atmosphere could cause the partial reduction of Ti4+ to Ti3+ and the doping of nitrogen into the Li4Ti5O12 lattice, in addition to the formation of the TiN phase. By controlling the ammonia concentration of the atmosphere and using a slight Ti excess in the reactants, Li4Ti5O12, nitrogen-doped Li4Ti5O12, or TiN-coated nitrogen-doped Li4Ti5O12 were obtained. Both the electrical conductivity and the TiN thickness were closely related to the ammonia concentration in the atmosphere. Synthesis under reducing atmosphere also resulted in powders with a different plate shape particulate morphology from that synthesized in air, and such plate-shape powders had an ultrahigh tap density of ∼1.9 g cm−3. Interestingly, the formation of TiN was not beneficial for capacity improvement due to its insulation towards lithium ions, unlike the nitrogen doping. The sample prepared under 3% NH3–N2, which was free of TiN coating, showed the best electrode performance with a capacity of 103 mA h g−1 even at 20 C with only 3% capacity decay after cycling 100 times.

114 citations

Journal ArticleDOI
TL;DR: In this article, activated carbon prepared from a peanut shell (PAC) was used for the removal of Pb2+ from aqueous solution and the impacts of the Pb 2+ adsorption capacities of the acid-modified carbons oxidized with HNO3 were also investigated.

114 citations


Authors

Showing all 22047 results

NameH-indexPapersCitations
Yi Chen2174342293080
Richard H. Friend1691182140032
Hua Zhang1631503116769
Wei Huang139241793522
Jian Zhou128300791402
Haiyan Wang119167486091
Jian Liu117209073156
Lain-Jong Li11362758035
Hong Wang110163351811
Jun-Jie Zhu10375441655
Stefan Kaskel10170536201
Hong Liu100190557561
Dirk De Vos9664233214
Peng Li95154845198
Feng Liu95106738478
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

94% related

Tianjin University
79.9K papers, 1.2M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Nankai University
51.8K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023125
2022502
20212,923
20202,572
20192,340
20181,967