scispace - formally typeset
Search or ask a question
Institution

Nanjing Tech University

EducationNanjing, China
About: Nanjing Tech University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Catalysis & Membrane. The organization has 21827 authors who have published 21794 publications receiving 364050 citations. The organization is also known as: Nangongda & Nánjīng Gōngyè Dàxúe.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a mechanism of intermolecular electrostatic-interaction-induced RTP at the molecular level by using molecular dynamics simulations, hybrid quantum mechanics, and molecular mechanics coupled with the thermal vibration correlation function (TVCF) formalism.
Abstract: ConspectusRoom-temperature phosphorescence (RTP) with a long afterglow from purely organic molecular aggregates has recently attracted many investigations because traditionally only inorganic and transition-metal complexes can emit phosphorescence at room temperature. Purely organic molecules can exhibit phosphorescence only at cryogenic temperatures and under inert conditions in solution. However, recently, a number of organic compounds have been found to demonstrate bright RTP upon aggregation, sometimes with a remarkable morphology dependence. We intended to rationalize such aggregation-induced organic RTP through theoretical investigation and quantum chemistry calculations by invoking intermolecular interaction effects. And we have identified the molecular descriptors for the molecular design of RTP materials.In this Account, we started with the proposition of the mechanism of intermolecular electrostatic-interaction-induced RTP at the molecular level by using molecular dynamics simulations, hybrid quantum mechanics, and molecular mechanics (QM/MM) coupled with the thermal vibration correlation function (TVCF) formalism we developed earlier. The effective intermolecular electrostatic interactions could stem from a variety of interactions in different organic RTP crystals, such as hydrogen bonding, π-halogen bonding, anion-π+ interaction, and d-pπ bonds and so forth. We find that these interactions can change the molecular orbital compositions involved in the lowest-lying singlet and triplet excited states that are responsible for phosphorescence, either through facilitating intersystem crossing from the excited-state singlet to the triplet and/or suppressing the nonradiative decay process from the lowest triplet to the ground state. This underlying RTP mechanism is believed to be very helpful in systematically and comprehensively understanding the aggregation/crystal-induced persistent organic RTP, which has been applied to explain a number of experiments.We then propose the molecular descriptors to characterize the phosphorescence efficiency and lifetime, respectively, derived from fundamental photophysical processes and requirements to obey the El-Sayed rule and generate phosphorescence. For a prototypical RTP system consisting of a carbonyl group and π-conjugated segments, the excited states can be regarded as an admixture of n → π* (with portion α) and π → π* (with portion β). The intersystem crossing (ISC) rate of S1 → Tn is mostly governed by the modification of the product of α and β, and the nonradiative rate of T1 → S0 is determined by the β value of T1. Thus, we employ γ = α × β and β to describe the phosphorescence efficiency and lifetime, respectively, which have been successfully applied in the molecular design of efficient and long-lived RTP systems in experiments. The molecular descriptors outlined in this Account, which are easily obtained from simple quantum chemistry calculations, are expected to play important roles in the machine-learning-based molecular screening in the future.

114 citations

Journal ArticleDOI
TL;DR: SCT is a promising alternative electrocatalyst for the OER and can be used in electrochemical devices for water oxidation, according to the X-ray photoelectron spectra analysis.
Abstract: The development of efficient, inexpensive, and stable electrocatalysts for the oxygen evolution reaction (OER) is critical for many electrochemical energy conversion technologies. The prohibitive price and insufficient stability of the state-of-the-art IrO2 electrocatalyst for the OER inhibits its use in practical devices. Here, SrM0.9Ti0.1O3−δ (M = Co, Fe) perovskites with different B-site transition metal elements were investigated as potentially cheaper OER electrocatalysts. They were prepared through a typical sol–gel route, and their catalytic activities for the OER in alkaline medium were comparatively studied using rotating disk electrodes. Both materials show high initial intrinsic activities in alkaline electrolyte for the OER, comparable to the benchmark perovskite-type electrocatalyst Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF), but SrCo0.9Ti0.1O3−δ (SCT) possessed more operational stability than SrFe0.9Ti0.1O3−δ (SFT), even better than BSCF and IrO2 catalysts. Based on the X-ray photoelectron spectra anal...

114 citations

Journal ArticleDOI
01 Sep 2020
TL;DR: In this article, the authors provided an in-time review of the recent progress in the understanding of intercalation pseudocapacitive process and the development of related electrode materials for EES.
Abstract: Electrochemical energy storage (EES) plays an important role in personal electronics, electrified vehicles, and smart grid. Lithium-ion batteries (LIBs) and supercapacitors (SCs) are two of the most important EES devices that have been widely used in our daily life. The energy density of LIBs is heavily dependent on the electrode capacity, in which the charge storage proceeds mainly in three different mechanisms, that is, alloying, conversion, and intercalation. Conventional LIBs show high energy density, but the rate performance is usually unfavorable. As a comparison, the SCs, which store energy based on electrochemical double layer capacitance (EDLC) or surface Faradaic redox pseudocapacitance, shows outstanding rate performance, but the energy density is still much worse than LIBs. Recently, intercalation pseudocapacitance appears as a new type of EES mechanism which stores energy into the bulk of electrode through a battery-like intercalation process but behaves similar to an electrode of SCs (fast reaction kinetics). Such intercalation pseudocapacitance can effectively narrow the gap between SCs and LIBs in energy density and power density, providing a new opportunity for the development of advanced energy storage system with both high energy density and power density. Up to now, more and more reports about intercalation pseudocapacitive materials have been appeared in literature, however, a systematic analysis of the recent development in intercalation pseudocapacitance is still lack. In this article, we provided an in-time review of the recent progress in the understanding of intercalation pseudocapacitive process and the development of related electrode materials for EES. Importance was paid to the difference between Faradaic surface-redox pseudocapacitance and intercalation pseudocapacitance, as well between battery-like intercalation and pseudocapacitive intercalation. Both cation interaction (Li+ and Na+) and oxygen anion intercalation pseudocapacitance was summarized.

114 citations

Journal ArticleDOI
TL;DR: In this paper, a ratiometric fluorescent probe for hypochlorite detection with high selectivity and sensitivity was developed, and the limit of detection was calculated to be as low as 8.9 nM.
Abstract: We have developed a ratiometric fluorescent probe for hypochlorite detection with high selectivity and sensitivity. The probe 1 can rapidly turn into an oxidized form accompanied by the fluorescence changes from yellow to blue only upon the addition of hypochlorite among various reactive oxygen species (ROS) and reactive nitrogen species (RNS). The limit of detection was calculated to be as low as 8.9 nM, which showed good sensitivity to hypochlorite. Furthermore, the confocal laser scanning micrographs of HeLa cells confirmed good cell permeability of probe 1 and its application to selective detecting hypochlorite in living cells.

114 citations

Journal ArticleDOI
TL;DR: In this article, a series of shaking table tests were conducted based on a plaster model of a three-story and three-span subway station, and the dynamic responses of the structure and ground soil under main shock and aftershock ground motions were studied.
Abstract: SUMMARY In order to investigate the seismic failure characteristics of a structure on the liquefiable ground, a series of shaking table tests were conducted based on a plaster model of a three-story and three-span subway station. The dynamic responses of the structure and ground soil under main shock and aftershock ground motions were studied. The sand boils and waterspouts phenomena, ground surface cracks, and earthquake-induced ground surface settlements were observed in the testing. For the structure, the upward movement, local damage and member cracking were obtained. Under the main shock, there appeared longer liquefaction duration for the ground soil while the pore pressure dissipated slowly. The acceleration amplification effect of the liquefied soil was weakened, and the soil showed a remarkable shock absorption and concentration effect with low frequency component of ground motion. However, under the aftershock, the dissipation of pore pressure in the ground soil became obvious. The peak acceleration of the structure reduced with the buried depth. Dynamic soil pressure on the side wall was smaller in the middle and larger at both ends. The interior column of the model structure was the weakest member. The peak strain and damage degree for both sides of the interior column exhibited an ‘S’ type distribution along the height. Moreover, the seismic response of both ground soil and subway station structure exhibited a remarkable spatial effect. The seismic damage development process and failure mechanism of the structure illustrated in this study can provide references for the engineers and researcher. Copyright © 2013 John Wiley & Sons, Ltd.

113 citations


Authors

Showing all 22047 results

NameH-indexPapersCitations
Yi Chen2174342293080
Richard H. Friend1691182140032
Hua Zhang1631503116769
Wei Huang139241793522
Jian Zhou128300791402
Haiyan Wang119167486091
Jian Liu117209073156
Lain-Jong Li11362758035
Hong Wang110163351811
Jun-Jie Zhu10375441655
Stefan Kaskel10170536201
Hong Liu100190557561
Dirk De Vos9664233214
Peng Li95154845198
Feng Liu95106738478
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

94% related

Tianjin University
79.9K papers, 1.2M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Nankai University
51.8K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023125
2022502
20212,923
20202,572
20192,340
20181,967