scispace - formally typeset
Search or ask a question
Institution

Nanjing Tech University

EducationNanjing, China
About: Nanjing Tech University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Catalysis & Membrane. The organization has 21827 authors who have published 21794 publications receiving 364050 citations. The organization is also known as: Nangongda & Nánjīng Gōngyè Dàxúe.


Papers
More filters
Journal ArticleDOI
TL;DR: Taken together, the cooperative two-factor ALE process can not only increase the accumulation of lipids rich in DHA, but also prevent the loss of produced lipid caused by lipid peroxidation.
Abstract: Schizochytrium sp. is a marine microalga with great potential as a promising sustainable source of lipids rich in docosahexaenoic acid (DHA). This organism’s lipid accumulation machinery can be induced by various stress conditions, but this stress induction usually comes at the expense of lower biomass in industrial fermentations. Moreover, oxidative damage induced by various environmental stresses can result in the peroxidation of lipids, and especially polyunsaturated fatty acids, which causes unstable DHA production, but is often ignored in fermentation processes. Therefore, it is urgent to develop new production strains that not only have a high DHA production capacity, but also possess strong antioxidant defenses. Adaptive laboratory evolution (ALE) is an effective method for the development of beneficial phenotypes in industrial microorganisms. Here, a novel cooperative two-factor ALE strategy based on concomitant low temperature and high salinity was applied to improve the production capacity of Schizochytrium sp. Low-temperature conditions were used to improve the DHA content, and high salinity was applied to stimulate lipid accumulation and enhance the antioxidative defense systems of Schizochytrium sp. After 30 adaptation cycles, a maximal cell dry weight of 126.4 g/L and DHA yield of 38.12 g/L were obtained in the endpoint strain ALE-TF30, which was 27.42 and 57.52% higher than parental strain, respectively. Moreover, the fact that ALE-TF30 had the lowest concentrations of reactive oxygen species and malondialdehyde among all strains indicated that lipid peroxidation was greatly suppressed by the evolutionary process. Accordingly, the ALE-TF30 strain exhibited an overall increase of gene expression levels of antioxidant enzymes and polyketide synthases compared to the parental strain. This study provides important clues on how to overcome the negative effects of lipid peroxidation on DHA production in Schizochytrium sp. Taken together, the cooperative two-factor ALE process can not only increase the accumulation of lipids rich in DHA, but also prevent the loss of produced lipid caused by lipid peroxidation. The strategy proposed here may provide a new and alternative direction for the industrial cultivation of oil-producing microalgae.

106 citations

Journal ArticleDOI
Wei Wang1, Mingye Ding1, Chunhua Lu1, Yaru Ni1, Zhongzi Xu1 
TL;DR: In this article, a new core-shell structured composite consisting of upconversion hexagonal phase NaYF4:Yb3+,Tm3+ (simply named NaYFs4) microrods and UV-vis-NIR driven anatase TiO2 nanosheets with exposed high-reactive {0,0,1} facets has been prepared and shown to be an advanced NIR and sunlight activated photocatalyst.
Abstract: A new core–shell structured composite consisting of upconversion hexagonal phase NaYF4:Yb3+,Tm3+ (simply named NaYF4) microrods and UV–vis–NIR driven anatase TiO2 nanosheets with exposed high-reactive {0 0 1} facets has been prepared and shown to be an advanced NIR and sunlight activated photocatalyst. To understand the nature of NIR-driven photocatalysis of NaYF4@TiO2, various analysis methods are conducted. Structure analysis proved that TiO2 is closely attached on the surface of NaYF4 and can absorb all the converted NIR light (980 nm laser) for photocatalysis. As a result, the new photocatalyst gives higher photocatalytic activity in decomposing phenol and Rhodamine B (RhB) than their physical mixture and pure TiO2 under the NIR and simulated sunlight irradiation. High-reactive hydroxyl radicals ( OH) analysis confirmed the superiority of the core–shell structure and the significant role of the upconversion material in using the NIR light to improve the photocatalytic activity of as-prepared TiO2. Finally, a mechanism for NIR driven photocatalysis is proposed which will help to improve the structure design and functionality of new type of photocatalysts.

106 citations

Journal ArticleDOI
TL;DR: Poly(3-hydroxybutyrate) (PHB) was produced by fed-batch cultures of Ralstonia eutropha with phosphate limitation under different glucose concentrations and the highest PHB productivity was obtained with glucose at 9 g l−1.
Abstract: Poly(3-hydroxybutyrate) (PHB) was produced by fed-batch cultures of Ralstonia eutropha with phosphate limitation under different glucose concentrations. When glucose was kept at 2.5 g l−1, cell growth and PHB synthesis were limited due to the shortage of carbon source but a higher PHB content occurred in the cell-growth stage. This shows that a low glucose concentration is favorable for PHB accumulation in R. eutropha. PHB obtained with glucose at 9 g l−1 is 1.6 times that obtained with 40 g l−1. When glucose was in the range of 9 to 40 g l−1, PHB concentration and productivity decreased significantly with the increase of glucose concentration. The highest PHB productivity was obtained with glucose at 9 g l−1.

106 citations

Journal ArticleDOI
Ting Fan1, Changchun Chen1, ZhongHai Tang, Yaru Ni1, Chunhua Lu1 
TL;DR: In this article, a visible light-induced g-C3N4/BiFeO3 composites were successfully synthesized by introducing BiO3 into polymeric g-c3n4/biO3, which exhibited higher visible light photocatalytic activity than that of a single semiconductor.

105 citations

Journal ArticleDOI
Wei Zhou1, Mingjie Wei1, Xin Zhang1, Fang Xu1, Yong Wang1 
TL;DR: This work demonstrates the rational design of fast membranes for desalination by tailoring stacking number and fashion of the COF monolayers by studying the transport behavior of water and salt ions through multilayered TpPa-1 COFs by nonequilibrium molecular dynamics simulations.
Abstract: Covalent organic frameworks (COFs) are penetrated with uniform and ordered nanopores, implying their great potential in molecular/ion separations. As an imine-linked, stable COF, TpPa-1 is receiving tremendous interest for molecular sieving membranes. Theoretically, atomically thin TpPa-1 monolayers exhibit extremely high water permeance but unfortunately no rejection to ions because of its large pore size (∼1.58 nm). The COF monolayers tend to stack to form laminated multilayers, but how this stacking influences water transport and ion rejections remains unknown. Herein, we investigate the transport behavior of water and salt ions through multilayered TpPa-1 COFs by nonequilibrium molecular dynamics simulations. By analyzing both the interfacial and interior resistance for water transport, we reveal that with rising stacking number of COF multilayers exhibit increasing ion rejections at the expense of water permeance. More importantly, stacking in the offset eclipsed fashion significantly reduces the equivalent pore size of COF multilayers to 0.89 nm, and ion rejection is correspondingly increased. Remarkably, 25 COF monolayers stacked in this fashion give 100% MgCl2 rejection, whereas water permeance remains 1 to 2 orders of magnitude higher than that of commercial nanofiltration membranes. This work demonstrates the rational design of fast membranes for desalination by tailoring stacking number and fashion of the COF monolayers.

105 citations


Authors

Showing all 22047 results

NameH-indexPapersCitations
Yi Chen2174342293080
Richard H. Friend1691182140032
Hua Zhang1631503116769
Wei Huang139241793522
Jian Zhou128300791402
Haiyan Wang119167486091
Jian Liu117209073156
Lain-Jong Li11362758035
Hong Wang110163351811
Jun-Jie Zhu10375441655
Stefan Kaskel10170536201
Hong Liu100190557561
Dirk De Vos9664233214
Peng Li95154845198
Feng Liu95106738478
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

94% related

Tianjin University
79.9K papers, 1.2M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Nankai University
51.8K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023125
2022502
20212,923
20202,572
20192,340
20181,967