scispace - formally typeset
Search or ask a question
Institution

Nanjing Tech University

EducationNanjing, China
About: Nanjing Tech University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Catalysis & Membrane. The organization has 21827 authors who have published 21794 publications receiving 364050 citations. The organization is also known as: Nangongda & Nánjīng Gōngyè Dàxúe.


Papers
More filters
Journal ArticleDOI
TL;DR: This work suggests a general approach for phase-controlled synthesis of nickel sulfide and opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials.
Abstract: A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g−1 at current densities of 1, 2, 5, 10 A g−1, respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials.

104 citations

Journal ArticleDOI
01 Jun 2020-Small
TL;DR: In vitro experiments indicate that the hyperthermia originating from Bi NPs can disrupt cell integrity and accelerate the Ag ions release, further exhibiting an excellent antibacterial performance toward methicillin-resistant Staphylococcus aureus, and in vivo results confirm that Ag-Bi@SiO2 NPs with photothermal-enhanced antibacterial activity are a potential nano-antibacterial agent for the treatment of skin infections.
Abstract: The emergence of multidrug resistant bacteria has resulted in plenty of stubborn nosocomial infections and severely threatens human health. Developing novel bactericide and therapeutic strategy is urgently needed. Herein, mesoporous silica supported silver-bismuth nanoparticles (Ag-Bi@SiO2 NPs) are constructed for synergistic antibacterial therapy. In vitro experiments indicate that the hyperthermia originating from Bi NPs can disrupt cell integrity and accelerate the Ag ions release, further exhibiting an excellent antibacterial performance toward methicillin-resistant Staphylococcus aureus (MRSA). Besides, under laser irradiation, Ag-Bi@SiO2 NPs at 100 µg mL-1 can effectively obliterate mature MRSA biofilm and cause a 69.5% decrease in the biomass, showing a better therapeutic effect than Bi@SiO2 NPs with laser (26.8%) or Ag-Bi@SiO2 NPs without laser treatment (30.8%) groups. More importantly, in vivo results confirm that ≈95.4% of bacteria in abscess are killed and the abscess ablation is accelerated using the Ag-Bi@SiO2 NPs antibacterial platform. Therefore, Ag-Bi@SiO2 NPs with photothermal-enhanced antibacterial activity are a potential nano-antibacterial agent for the treatment of skin infections.

104 citations

Journal ArticleDOI
TL;DR: The key to high performances stems from hierachically structured materials with an ordered lamellar structure, large redox activity, and electrochemical capacitance for ions with smooth diffusion and flooding accommodation, which will guide substantial progress of next-generation electrochemical actuators.
Abstract: Bioinspired methods allowing artificial actuators to perform controllably are potentially important for various principles and may offer fundamental insight into chemistry and engineering. To date, the main challenges persist regarding the achievement of large deformation in fast response-time and potential-engineering applications in which electrode materials and structures limit ion diffusion and accumulation processes. Herein, a novel electrochemical actuator is developed that presents both higher electromechanical performances and biomimetic applications based on hierachically structured covalently bridged black phosphorous/carbon nanotubes. The new actuator demonstrates astonishing actuation properties, including low power consumption/strain (0.04 W cm-2 %-1 ), a large peak-to-peak strain (1.67%), a controlled frequency response (0.1-20 Hz), faster strain and stress rates (11.57% s-1 ; 28.48 MPa s-1 ), high power (29.11 kW m-3 ), and energy (8.48 kJ m-3 ) densities, and excellent cycling stability (500 000 cycles). More importantly, bioinspired applications such as artificial-claw, wings-vibrating, bionic-flower, and hand actuators have been realized. The key to high performances stems from hierachically structured materials with an ordered lamellar structure, large redox activity, and electrochemical capacitance (321.4 F g-1 ) for ions with smooth diffusion and flooding accommodation, which will guide substantial progress of next-generation electrochemical actuators.

104 citations

Journal ArticleDOI
TL;DR: In this article, the phase transition, microstructure, detailed structures and tensile properties of selective laser melted Ti6Al4V alloy were examined and analyzed, and the effects of different heat treatment methods on the as-fabricated samples were also investigated.

104 citations

Journal ArticleDOI
TL;DR: In this paper, a model polyfluorene with β-phase, poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-( octyloxy]-9, 9, 9-dimethylpoly(2, 7)-diyl] (PODPF), has been synthesized successfully via key Baeyer-Villiger rearrangement reaction.
Abstract: Rational molecular design allows for manipulating the chain conformations of polymer semiconductors by cooperative arrangement of bulky groups with steric hindrance effect and supramolecular groups with noncovalent attractions. Herein, a model polyfluorene with β-phase, poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl] (PODPF), has been synthesized successfully via key Baeyer–Villiger rearrangement reaction. Its thin film exhibited excellent spectral stability without green band emission after thermal annealing at 200 °C under air and nitrogen ambients. The β-phases of PODPF in the concentrated toluene solution, organogels, and films have been characterized and confirmed by UV absorption and PL spectra as well as grazing-incidence X-ray scattering. The results suggest that the octyloxy substituents enable backbone planarization via van der Waals forces of the in-plane alkyl chains to overcome intrachain repulsion between fluorene monomers. Organic lasers using ...

104 citations


Authors

Showing all 22047 results

NameH-indexPapersCitations
Yi Chen2174342293080
Richard H. Friend1691182140032
Hua Zhang1631503116769
Wei Huang139241793522
Jian Zhou128300791402
Haiyan Wang119167486091
Jian Liu117209073156
Lain-Jong Li11362758035
Hong Wang110163351811
Jun-Jie Zhu10375441655
Stefan Kaskel10170536201
Hong Liu100190557561
Dirk De Vos9664233214
Peng Li95154845198
Feng Liu95106738478
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

94% related

Tianjin University
79.9K papers, 1.2M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Nankai University
51.8K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023125
2022502
20212,923
20202,572
20192,340
20181,967