scispace - formally typeset
Search or ask a question
Institution

Nanjing Tech University

EducationNanjing, China
About: Nanjing Tech University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Catalysis & Membrane. The organization has 21827 authors who have published 21794 publications receiving 364050 citations. The organization is also known as: Nangongda & Nánjīng Gōngyè Dàxúe.


Papers
More filters
Journal ArticleDOI
TL;DR: Theoretical calculations and single-crystal analysis reveal that the d-pπ bond not only reduces the (n, π*) proportion of the T1 state, but also endows the rigid molecular environment with multiple intermolecular interactions, thus enabling long-lived phosphorescence.
Abstract: Developing pure organic materials with ultralong lifetimes is attractive but challenging. Here we report a concise chemical approach to regulate the electronic configuration for phosphorescence enhancement. After the introduction of d-pπ bonds into a phenothiazine model system, a phosphorescence lifetime enhancement of up to 19 times was observed for DOPPMO, compared to the reference PPMO. A record phosphorescence lifetime of up to 876 ms was obtained in phosphorescent phenothiazine. Theoretical calculations and single-crystal analysis reveal that the d-pπ bond not only reduces the (n, π*) proportion of the T1 state, but also endows the rigid molecular environment with multiple intermolecular interactions, thus enabling long-lived phosphorescence. This finding makes a valuable contribution to the prolongation of phosphorescence lifetimes and the extension of the scope of phosphorescent materials.

97 citations

Journal ArticleDOI
TL;DR: In this article, a well-instrumented drop-weight test program was developed to investigate shear failure modes of large-scale RC beams under impact loading, and test variables included beam span, transverse rei...
Abstract: A well-instrumented drop-weight test program was developed to investigate shear failure modes of large-scale RC beams under impact loading. Test variables included beam span, transverse rei...

97 citations

Journal ArticleDOI
TL;DR: In this paper, a series of bifunctional composites with excellent electrochemical activity and durability based on platinum with the perovskite Sr(Co0.8Fe0.2)(0.95)P0.05O3-delta (SCFP) are synthesized via a facile but effective strategy.
Abstract: Constructing highly active electrocatalysts with superior stability at low cost is a must, and vital for the large-scale application of rechargeable Zn-air batteries. Herein, a series of bifunctional composites with excellent electrochemical activity and durability based on platinum with the perovskite Sr(Co0.8Fe0.2)(0.95)P0.05O3-delta (SCFP) are synthesized via a facile but effective strategy. The optimal sample Pt-SCFP/C-12 exhibits outstanding bifunctional activity for the oxygen reduction reaction and oxygen evolution reaction with a potential difference of 0.73 V. Remarkably, the Zn-air battery based on this catalyst shows an initial discharge and charge potential of 1.25 and 2.02 V at 5 mA cm(-2), accompanied by an excellent cycling stability. X-ray photoelectron spectroscopy, X-ray absorption near-edge structure, and extended X-ray absorption fine structure experiments demonstrate that the superior performance is due to the strong electronic interaction between Pt and SCFP that arises as a result of the rapid electron transfer via the Pt-O-Co bonds as well as the higher concentration of surface oxygen vacancies. Meanwhile, the spillover effect between Pt and SCFP also can increase more active sites via lowering energy barrier and change the rate-determining step on the catalysts surface. Undoubtedly, this work provides an efficient approach for developing low-cost and highly active catalysts for wider application of electrochemical energy devices.

97 citations

Journal ArticleDOI
12 Mar 2021-Science
TL;DR: In this paper, the authors reported that attempted preparation of low-valent CaI complexes in the form of LCa-CaL (where L is a bulky β-diketiminate ligand) under the dinitrogen (N2) atmosphere led to isolation of the LCa(N 2)CaL, which was characterized crystallographically.
Abstract: Here we report that attempted preparation of low-valent CaI complexes in the form of LCa-CaL (where L is a bulky β-diketiminate ligand) under dinitrogen (N2) atmosphere led to isolation of LCa(N2)CaL, which was characterized crystallographically. The N22ˉ anion in this complex reacted in most cases as a very potent two-electron donor. Therefore, LCa(N2)CaL acts as a synthon for the low-valent CaI complex LCa-CaL, which was the target of our studies. The N22ˉ anion could also be protonated to diazene (N2H2) that disproportionated to hydrazine and N2. The role of Ca d orbitals for N2 activation is discussed.

97 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: The proposed temporal structure mining (TSM) approach, which treats each segment's phase as a hidden variable, uses segments' confidence scores from each phase filter to construct a table and determine hidden variables, i.e., phases of segments, by a maximal circulant path discovery along the table.
Abstract: Different from the fully-supervised action detection problem that is dependent on expensive frame-level annotations, weakly supervised action detection (WSAD) only needs video-level annotations, making it more practical for real-world applications. Existing WSAD methods detect action instances by scoring each video segment (a stack of frames) individually. Most of them fail to model the temporal relations among video segments and cannot effectively characterize action instances possessing latent temporal structure. To alleviate this problem in WSAD, we propose the temporal structure mining (TSM) approach. In TSM, each action instance is modeled as a multi-phase process and phase evolving within an action instance, \emph{i.e.}, the temporal structure, is exploited. Meanwhile, the video background is modeled by a background phase, which separates different action instances in an untrimmed video. In this framework, phase filters are used to calculate the confidence scores of the presence of an action's phases in each segment. Since in the WSAD task, frame-level annotations are not available and thus phase filters cannot be trained directly. To tackle the challenge, we treat each segment's phase as a hidden variable. We use segments' confidence scores from each phase filter to construct a table and determine hidden variables, i.e., phases of segments, by a maximal circulant path discovery along the table. Experiments conducted on three benchmark datasets demonstrate the state-of-the-art performance of the proposed TSM.

97 citations


Authors

Showing all 22047 results

NameH-indexPapersCitations
Yi Chen2174342293080
Richard H. Friend1691182140032
Hua Zhang1631503116769
Wei Huang139241793522
Jian Zhou128300791402
Haiyan Wang119167486091
Jian Liu117209073156
Lain-Jong Li11362758035
Hong Wang110163351811
Jun-Jie Zhu10375441655
Stefan Kaskel10170536201
Hong Liu100190557561
Dirk De Vos9664233214
Peng Li95154845198
Feng Liu95106738478
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

94% related

Tianjin University
79.9K papers, 1.2M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Nankai University
51.8K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023125
2022502
20212,923
20202,572
20192,340
20181,967