scispace - formally typeset
Search or ask a question
Institution

Nanjing Tech University

EducationNanjing, China
About: Nanjing Tech University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Catalysis & Membrane. The organization has 21827 authors who have published 21794 publications receiving 364050 citations. The organization is also known as: Nangongda & Nánjīng Gōngyè Dàxúe.


Papers
More filters
Journal ArticleDOI
01 Oct 2020-Small
TL;DR: This work proves that the crystal phase plays a key role in determining the performance of nanoagents based on TMD nanomaterials for PAI guided PTT in the second near-infrared (NIR-II) window.
Abstract: Transition metal dichalcogenide (TMD) nanomaterials, specially MoS2 , are proven to be appealing nanoagents for photothermal cancer therapies. However, the impact of the crystal phase of TMDs on their performance in photoacoustic imaging (PAI) and photothermal therapy (PTT) remains unclear. Herein, the preparation of ultrasmall single-layer MoS2 nanodots with different phases (1T and 2H phase) is reported to explore their phase-dependent performances as nanoagents for PAI guided PTT in the second near-infrared (NIR-II) window. Significantly, the 1T-MoS2 nanodots give a much higher extinction coefficient (25.6 L g-1 cm-1 ) at 1064 nm and subsequent photothermal power conversion efficiency (PCE: 43.3%) than that of the 2H-MoS2 nanodots (extinction coefficient: 5.3 L g-1 cm-1 , PCE: 21.3%). Moreover, the 1T-MoS2 nanodots also give strong PAI signals as compared to negligible signals of 2H-MoS2 nanodots in the NIR-II window. After modification with polyvinylpyrrolidone, the 1T-MoS2 nanodots can be used as a highly efficient agent for PAI guided PTT to effectively ablate cancer cells in vitro and tumors in vivo under 1064 nm laser irradiation. This work proves that the crystal phase plays a key role in determining the performance of nanoagents based on TMD nanomaterials for PAI guided PTT.

135 citations

Journal ArticleDOI
TL;DR: Konjac glucomannan was modified with amino acids to synthesize polysaccharide esters (KGMA and KGMH) which were evaluated as corrosion inhibitor for mild steel in 0.5M HCl solution and found to have the lower water absorbency and the higher water solubility than KGM.

135 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the proof-of-principle of a new concept of rechargeable batteries based on chloride shuttle, i.e., chloride ion batteries, which includes the metal chloride/metal electrochemical couple and an electrolyte composed of binary ionic liquids allowing chloride ion transfer at room temperature.

135 citations

Journal ArticleDOI
TL;DR: This study reports a novel strategy named microencapsulated nanoconfinement to realize local synthesis of nano-MHs, which possess ultrahigh structural stability and superior desorption kinetics.
Abstract: Metal hydrides (MHs) have recently been designed for hydrogen sensors, switchable mirrors, rechargeable batteries, and other energy-storage and conversion-related applications. The demands of MHs, particular fast hydrogen absorption/desorption kinetics, have brought their sizes to nanoscale. However, the nanostructured MHs generally suffer from surface passivation and low aggregation-resisting structural stability upon absorption/desorption. This study reports a novel strategy named microencapsulated nanoconfinement to realize local synthesis of nano-MHs, which possess ultrahigh structural stability and superior desorption kinetics. Monodispersed Mg2 NiH4 single crystal nanoparticles (NPs) are in situ encapsulated on the surface of graphene sheets (GS) through facile gas-solid reactions. This well-defined MgO coating layer with a thickness of ≈3 nm efficiently separates the NPs from each other to prevent aggregation during hydrogen absorption/desorption cycles, leading to excellent thermal and mechanical stability. More interestingly, the MgO layer shows superior gas-selective permeability to prevent further oxidation of Mg2 NiH4 meanwhile accessible for hydrogen absorption/desorption. As a result, an extremely low activation energy (31.2 kJ mol-1 ) for the dehydrogenation reaction is achieved. This study provides alternative insights into designing nanosized MHs with both excellent hydrogen storage activity and thermal/mechanical stability exempting surface modification by agents.

135 citations

Journal ArticleDOI
TL;DR: Spectral identification indicates that the excimer and ESIPT processes are responsible for the green and orange fluorescence of the triazole derivative, which can be used for anti-counterfeiting and food spoilage detection applications, respectively.
Abstract: Excitation wavelength dependent (Ex-De) emission materials have potential applications in anti-counterfeiting labels and bioimaging. Nevertheless, few purely organic chromophores are used in these areas. In this study, multiple excited states were incorporated into a molecule that was excited state intramolecular proton transfer (ESIPT) active, with the goal of manipulating the relaxation pathways of the excited states. The triazole derivative exhibits Ex-De photoluminescence (PL), and the maximum PL wavelength is located at 526 nm and 593 nm under a series of excitation wavelengths. Spectral identification indicates that the excimer and ESIPT processes are responsible for the green (526 nm) and orange (593 nm) fluorescence, respectively. Importantly, the quick response code and test strip prepared with this triazole derivative can be used for anti-counterfeiting and food spoilage detection applications, respectively. This research opens the door for developing novel Ex-De materials for anti-counterfeiting purposes.

134 citations


Authors

Showing all 22047 results

NameH-indexPapersCitations
Yi Chen2174342293080
Richard H. Friend1691182140032
Hua Zhang1631503116769
Wei Huang139241793522
Jian Zhou128300791402
Haiyan Wang119167486091
Jian Liu117209073156
Lain-Jong Li11362758035
Hong Wang110163351811
Jun-Jie Zhu10375441655
Stefan Kaskel10170536201
Hong Liu100190557561
Dirk De Vos9664233214
Peng Li95154845198
Feng Liu95106738478
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

94% related

Tianjin University
79.9K papers, 1.2M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Nankai University
51.8K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023125
2022502
20212,924
20202,572
20192,340
20181,967