scispace - formally typeset
Search or ask a question

Showing papers by "Nanjing University published in 2010"


Journal ArticleDOI
TL;DR: This work presents a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition, and improves robustness by adding Kernel principal component analysis (PCA) feature extraction and incorporating rich local appearance cues from two complementary sources.
Abstract: Making recognition more reliable under uncontrolled lighting conditions is one of the most important challenges for practical face recognition systems. We tackle this by combining the strengths of robust illumination normalization, local texture-based face representations, distance transform based matching, kernel-based feature extraction and multiple feature fusion. Specifically, we make three main contributions: 1) we present a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition; 2) we introduce local ternary patterns (LTP), a generalization of the local binary pattern (LBP) local texture descriptor that is more discriminant and less sensitive to noise in uniform regions, and we show that replacing comparisons based on local spatial histograms with a distance transform based similarity metric further improves the performance of LBP/LTP based face recognition; and 3) we further improve robustness by adding Kernel principal component analysis (PCA) feature extraction and incorporating rich local appearance cues from two complementary sources-Gabor wavelets and LBP-showing that the combination is considerably more accurate than either feature set alone. The resulting method provides state-of-the-art performance on three data sets that are widely used for testing recognition under difficult illumination conditions: Extended Yale-B, CAS-PEAL-R1, and Face Recognition Grand Challenge version 2 experiment 4 (FRGC-204). For example, on the challenging FRGC-204 data set it halves the error rate relative to previously published methods, achieving a face verification rate of 88.1% at 0.1% false accept rate. Further experiments show that our preprocessing method outperforms several existing preprocessors for a range of feature sets, data sets and lighting conditions.

2,981 citations


Journal ArticleDOI
TL;DR: Ag(3)PO(4) semiconductor is reported, which can harness visible light to oxidize water as well as decompose organic contaminants in aqueous solution, and its potential as a photofunctional material for both water splitting and waste-water cleaning is suggested.
Abstract: The search for active semiconductor photocatalysts that split water directly under visible-light irradiation remains challenging for solar applications. An orthophosphate semiconductor, Ag3PO4, which is capable of harnessing visible light to oxidize water as well as decompose organic contaminants in aqueous solution is now reported.

1,775 citations


Journal ArticleDOI
23 Feb 2010-Langmuir
TL;DR: The photodegradation mechanisms for two typical dyes, rhodamine B (Rh B) and methyl orange (MO), are proposed based on comparison experiments and the electron paramagnetic resonance was used to detect the active species for the photodegrading reaction over g-C(3)N(4).
Abstract: Graphitic carbon nitride (g-C3N4) and boron-doped g-C3N4 were prepared by heating melamine and the mixture of melamine and boron oxide, respectively. X-ray diffraction, X-ray photoelectron spectroscopy, and UV−vis spectra were used to describe the properties of as-prepared samples. The electron paramagnetic resonance was used to detect the active species for the photodegradation reaction over g-C3N4. The photodegradation mechanisms for two typical dyes, rhodamine B (Rh B) and methyl orange (MO), are proposed based on our comparison experiments. In the g-C3N4 photocatalysis system, the photodegradation of Rh B and MO is attributed to the direct hole oxidation and overall reaction, respectively; however, for the MO photodegradation the reduction process initiated by photogenerated electrons is a major photocatalytic process compared with the oxidation process induced by photogenerated holes. Boron doping for g-C3N4 can promote photodegradation of Rh B because the boron doping improves the dye adsorption and...

1,495 citations


Journal ArticleDOI
TL;DR: It is reported that secreted miRNAs can serve as signaling molecules mediating intercellular communication and demonstrate that cells can secrete miRNA and deliver them into recipient cells where the exogenous mi RNAs can regulate target gene expression and recipient cell function.

1,122 citations


Journal ArticleDOI
Jiahong Wang1, Shourong Zheng1, Yun Shao1, Jingliang Liu1, Zhaoyi Xu1, Dongqiang Zhu1 
TL;DR: The present work highlights the potential for using amino-functionalized Fe(3)O(4)@SiO(2) magnetic nanoparticles as an effective and recyclable adsorbent for the removal of heavy metal ions in water and wastewater treatment.

932 citations


Journal ArticleDOI
TL;DR: A statistical framework which generalizes the bag-of-words representation, in which the visual words are generated by a statistical process rather than using a clustering algorithm, while the empirical performance is competitive to clustering-based method.
Abstract: The bag-of-words model is one of the most popular representation methods for object categorization. The key idea is to quantize each extracted key point into one of visual words, and then represent each image by a histogram of the visual words. For this purpose, a clustering algorithm (e.g., K-means), is generally used for generating the visual words. Although a number of studies have shown encouraging results of the bag-of-words representation for object categorization, theoretical studies on properties of the bag-of-words model is almost untouched, possibly due to the difficulty introduced by using a heuristic clustering process. In this paper, we present a statistical framework which generalizes the bag-of-words representation. In this framework, the visual words are generated by a statistical process rather than using a clustering algorithm, while the empirical performance is competitive to clustering-based method. A theoretical analysis based on statistical consistency is presented for the proposed framework. Moreover, based on the framework we developed two algorithms which do not rely on clustering, while achieving competitive performance in object categorization when compared to clustering-based bag-of-words representations.

923 citations


Journal ArticleDOI
TL;DR: An examination of summer mortality rates in and around Shanghai yields heightened heat-related mortality in urban regions, and it is concluded that the UHI is directly responsible, acting to worsen the adverse health effects from exposure to extreme thermal conditions.
Abstract: With global warming forecast to continue into the foreseeable future, heat waves are very likely to increase in both frequency and intensity. In urban regions, these future heat waves will be exacerbated by the urban heat island effect, and will have the potential to negatively influence the health and welfare of urban residents. In order to investigate the health effects of the urban heat island (UHI) in Shanghai, China, 30 years of meteorological records (1975-2004) were examined for 11 first- and second-order weather stations in and around Shanghai. Additionally, automatic weather observation data recorded in recent years as well as daily all-cause summer mortality counts in 11 urban, suburban, and exurban regions (1998-2004) in Shanghai have been used. The results show that different sites (city center or surroundings) have experienced different degrees of warming as a result of increasing urbanization. In turn, this has resulted in a more extensive urban heat island effect, causing additional hot days and heat waves in urban regions compared to rural locales. An examination of summer mortality rates in and around Shanghai yields heightened heat-related mortality in urban regions, and we conclude that the UHI is directly responsible, acting to worsen the adverse health effects from exposure to extreme thermal conditions.

782 citations


Journal ArticleDOI
Haifeng Dong1, Wenchao Gao1, Feng Yan1, Hanxu Ji1, Huangxian Ju1 
TL;DR: This work designs a novel platform for effective sensing of biomolecules by fluorescence resonance energy transfer from quantum dots (QDs) to graphene oxide (GO) and applies the first application of the FRET between QDs and GO, which opens new opportunities for sensitive detection of biorecognition events.
Abstract: This work designed a novel platform for effective sensing of biomolecules by fluorescence resonance energy transfer (FRET) from quantum dots (QDs) to graphene oxide (GO). The QDs were first modified with a molecular beacon (MB) as a probe to recognize the target analyte. The strong interaction between MB and GO led to the fluorescent quenching of QDs. Upon the recognition of the target, the distance between the QDs and GO increased, and the interaction between target-bound MB and GO became weaker, which significantly hindered the FRET and, thus, increased the fluorescence of QDs. The change in fluorescent intensity produced a novel method for detection of the target. The GO-quenching approach could be used for detection of DNA sequences, with advantages such as less labor for synthesis of the MB-based fluorescent probe, high quenching efficiency and sensitivity, and good specificity. By substituting the MB with aptamer, this strategy could be conveniently extended for detection of other biomolecules, whic...

735 citations


Journal ArticleDOI
M. Ablikim, Z. H. An, J. Z. Bai, Niklaus Berger  +325 moreInstitutions (19)
TL;DR: In this article, the design and construction of BESIII, which is designed to study physics in the τ-charm energy region utilizing the new high luminosity BEPCII double ring e + e − collider, is discussed.
Abstract: This paper will discuss the design and construction of BESIII, which is designed to study physics in the τ -charm energy region utilizing the new high luminosity BEPCII double ring e + e − collider. The expected performance will be given based on Monte Carlo simulations and results of cosmic ray and beam tests. In BESIII, tracking and momentum measurements for charged particles are made by a cylindrical multilayer drift chamber in a 1 T superconducting solenoid. Charged particles are identified with a time-of-flight system based on plastic scintillators in conjunction with dE/dx (energy loss per unit pathlength) measurements in the drift chamber. Energies of electromagnetic showers are measured by a CsI(Tl) crystal calorimeter located inside the solenoid magnet. Muons are identified by arrays of resistive plate chambers in a steel magnetic yoke for the flux return. The level 1 trigger system, data acquisition system and the detector control system based on networked computers will also be described.

733 citations


Journal ArticleDOI
13 May 2010-Nature
TL;DR: It is demonstrated that a nanoscale assembly line can be realized by the judicious combination of three known DNA-based modules: a DNA origami tile that provides a framework and track for the assembly process, cassettes containing three independently controlled two-state DNA machines that serve as programmable cargo-donating devices and a DNA walker that can move on the track from device to device and collect cargo.
Abstract: Many new functional materials and devices could be made if it were possible to rationally combine different nanometre-scale particles into larger structures. An assembly line operating on the nanometre-scale would be an ideal means for constructing a wide range of complex target structures, and has now been demonstrated in proof-of-principle experiments. It combines three known DNA-based modules — a DNA origami tile as framework and track for the assembly process, a cassette providing cargo delivery from three programmable DNA machines, and a three-'handed', four-'footed' DNA walker that generates the target product by moving along the track and collecting cargo as directed by the program. The assembly line can be programmed to join three different types of gold nanoparticle to form eight possible target products. Many new functional materials and devices could be made if it were possible to rationally combine nanometre-scale particles into larger structures. An assembly line operating on the nanometre scale has now been demonstrated. It uses a DNA origami tile as a framework and track for the assembly process, three distinct DNA machines attached to the tile as programmable cargo-donating devices, and a DNA walker to generate the target product by moving along the track and collecting cargo from those devices that are switched on. Our ability to synthesize nanometre-scale chemical species, such as nanoparticles with desired shapes and compositions, offers the exciting prospect of generating new functional materials and devices by combining them in a controlled fashion into larger structures. Self-assembly can achieve this task efficiently, but may be subject to thermodynamic and kinetic limitations: reactants, intermediates and products may collide with each other throughout the assembly time course to produce non-target species instead of target species. An alternative approach to nanoscale assembly uses information-containing molecules such as DNA1 to control interactions and thereby minimize unwanted cross-talk between different components. In principle, this method should allow the stepwise and programmed construction of target products by linking individually selected nanoscale components—much as an automobile is built on an assembly line. Here we demonstrate that a nanoscale assembly line can be realized by the judicious combination of three known DNA-based modules: a DNA origami2 tile that provides a framework and track for the assembly process, cassettes containing three independently controlled two-state DNA machines that serve as programmable cargo-donating devices3,4 and are attached4,5 in series to the tile, and a DNA walker that can move on the track from device to device and collect cargo. As the walker traverses the pathway prescribed by the origami tile track, it sequentially encounters the three DNA devices, each of which can be independently switched between an ‘ON’ state, allowing its cargo to be transferred to the walker, and an ‘OFF’ state, in which no transfer occurs. We use three different types of gold nanoparticle species as cargo and show that the experimental system does indeed allow the controlled fabrication of the eight different products that can be obtained with three two-state devices.

726 citations


Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, A. A. Abdelalim4  +3098 moreInstitutions (192)
TL;DR: In this article, the authors used the ATLAS detector to detect dijet asymmetry in the collisions of lead ions at the Large Hadron Collider and found that the transverse energies of dijets in opposite hemispheres become systematically more unbalanced with increasing event centrality, leading to a large number of events which contain highly asymmetric di jets.
Abstract: By using the ATLAS detector, observations have been made of a centrality-dependent dijet asymmetry in the collisions of lead ions at the Large Hadron Collider. In a sample of lead-lead events with a per-nucleon center of mass energy of 2.76 TeV, selected with a minimum bias trigger, jets are reconstructed in fine-grained, longitudinally segmented electromagnetic and hadronic calorimeters. The transverse energies of dijets in opposite hemispheres are observed to become systematically more unbalanced with increasing event centrality leading to a large number of events which contain highly asymmetric dijets. This is the first observation of an enhancement of events with such large dijet asymmetries, not observed in proton-proton collisions, which may point to an interpretation in terms of strong jet energy loss in a hot, dense medium.

Journal ArticleDOI
TL;DR: Using computer simulations, this work investigates the physical translocation processes of nanoparticles with different shapes and volumes and finds that the shape anisotropy and initial orientation of the particle are crucial to the nature of the interaction between the particle and lipid bilayer.
Abstract: Understanding how nanoparticles with different shapes interact with cell membranes is important in drug and gene delivery, but this interaction remains poorly studied. Using computer simulations, we investigate the physical translocation processes of nanoparticles with different shapes (for example, spheres, ellipsoids, rods, discs and pushpin-like particles) and volumes across a lipid bilayer. We find that the shape anisotropy and initial orientation of the particle are crucial to the nature of the interaction between the particle and lipid bilayer. The penetrating capability of a nanoparticle across a lipid bilayer is determined by the contact area between the particle and lipid bilayer, and the local curvature of the particle at the contact point. Particle volume affects translocation indirectly, and particle rotation can complicate the penetration process. Our results provide a practical guide to geometry considerations when designing nanoscale cargo carriers.

Journal ArticleDOI
TL;DR: The first experimental demonstration of a rectified energy flux of acoustic waves is presented, on the basis of the earlier theoretical proposal of an 'acoustic diode', to have substantial practical significance in the focusing of ultrasound in medical applications.
Abstract: The detection of acoustic signals is of relevance for a range of practical applications, for example in medical diagnostics. However, whereas rectification of electric current and other energy forms such as thermal flux has been demonstrated, acoustic rectification has not yet been achieved. Here, on the basis of the earlier theoretical proposal of an 'acoustic diode', we present the first experimental demonstration of a rectified energy flux of acoustic waves. A one-dimensional acoustic rectifier is fabricated by coupling a superlattice with a layer of ultrasound contrast agent microbubble suspension. A significant rectifying effect is observed within two frequency bands at locations that agree well with theoretical predictions. Following optimization of the concentration of the microbubble suspension, rectifying ratios can be as high as ~10(4). This realization of an acoustic rectifier should have substantial practical significance, for example in the focusing of ultrasound in medical applications.

Journal ArticleDOI
TL;DR: The ultralong and ultrathin geometry of the Zn( 2)GeO(4) nanoribbon proves to greatly promote the photocatalytic activity toward reduction of CO(2) into renewable hydrocarbon fuel (CH(4)) in the presence of water vapor.
Abstract: Single-crystalline Zn2GeO4 nanobelts with lengths of hundreds of micrometers, thicknesses as small as ∼7 nm, and aspect ratios of up to 10 000 were synthesized in a binary ethylenediamine/water solvent system using a solvothermal route. The ultralong and ultrathin geometry of the Zn2GeO4 nanoribbon proves to greatly promote the photocatalytic activity toward reduction of CO2 into renewable hydrocarbon fuel (CH4) in the presence of water vapor.

Journal ArticleDOI
TL;DR: This paper proposes the use of the alternating direction method - a classic approach for optimization problems with separable variables - for signal reconstruction from partial Fourier measurements, and runs very fast (typically in a few seconds on a laptop) because it requires a small number of iterations.
Abstract: Recent compressive sensing results show that it is possible to accurately reconstruct certain compressible signals from relatively few linear measurements via solving nonsmooth convex optimization problems. In this paper, we propose the use of the alternating direction method - a classic approach for optimization problems with separable variables (D. Gabay and B. Mercier, ?A dual algorithm for the solution of nonlinear variational problems via finite-element approximations,? Computer and Mathematics with Applications, vol. 2, pp. 17-40, 1976; R. Glowinski and A. Marrocco, ?Sur lapproximation par elements finis dordre un, et la resolution par penalisation-dualite dune classe de problemes de Dirichlet nonlineaires,? Rev. Francaise dAut. Inf. Rech. Oper., vol. R-2, pp. 41-76, 1975) - for signal reconstruction from partial Fourier (i.e., incomplete frequency) measurements. Signals are reconstructed as minimizers of the sum of three terms corresponding to total variation, ?1-norm of a certain transform, and least squares data fitting. Our algorithm, called RecPF and published online, runs very fast (typically in a few seconds on a laptop) because it requires a small number of iterations, each involving simple shrinkages and two fast Fourier transforms (or alternatively discrete cosine transforms when measurements are in the corresponding domain). RecPF was compared with two state-of-the-art algorithms on recovering magnetic resonance images, and the results show that it is highly efficient, stable, and robust.

Journal ArticleDOI
TL;DR: The obviously increased performance of g-C(3)N(4)-TaON is ascribed mainly to enhancement of electron-hole separations both at the interface and in the semiconductors.
Abstract: Organic–inorganic composite photocatalyst g-C3N4–TaON with visible-light response was prepared by a milling-heat treatment method. The photocatalyst was characterized by X-ray diffraction, high-resolution transmission electron microscopy and UV-vis diffuse reflection spectroscopy. The activity of composite photocatalyst g-C3N4–TaON for photodegradation of rhodamine B is higher than that of either single-phase g-C3N4 or TaON. The obviously increased performance of g-C3N4–TaON is ascribed mainly to enhancement of electron–hole separations both at the interface and in the semiconductors.

Journal ArticleDOI
TL;DR: This tutorial review focuses on recent progress in biosensor development by exploiting several unique optical, electronic and catalytic properties of a range of nanomaterials, such as gold nanoparticles, quantum dots, silicon nanowires, carbon nanotubes and graphene.
Abstract: There has been great interest in developing new nucleic acid and protein detection methods for both clinical and numerous non-clinical applications. In a long-lasting effort to improve the detection ability of bioassays, functional nanomaterials have been actively explored to greatly enhance the sensitivity during the last two decades. This tutorial review focuses on recent progress in biosensor development by exploiting several unique optical, electronic and catalytic properties of a range of nanomaterials, such as gold nanoparticles, quantum dots, silicon nanowires, carbon nanotubes and graphene. In addition, a perspective on new opportunities offered by emerging technologies (e.g. DNA nanotechnology) is provided.

Proceedings Article
06 Dec 2010
TL;DR: The proposed QUIRE approach provides a systematic way for measuring and combining the informativeness and representativeness of an unlabeled instance by incorporating the correlation among labels and is extended to multi-label learning by actively querying instance-label pairs.
Abstract: Most active learning approaches select either informative or representative unlabeled instances to query their labels. Although several active learning algorithms have been proposed to combine the two criteria for query selection, they are usually ad hoc in finding unlabeled instances that are both informative and representative. We address this challenge by a principled approach, termed QUIRE, based on the min-max view of active learning. The proposed approach provides a systematic way for measuring and combining the informativeness and representativeness of an instance. Extensive experimental results show that the proposed QUIRE approach outperforms several state-of -the-art active learning approaches.

Journal ArticleDOI
TL;DR: This letter discusses the problem of direction of departure (DOD) and direction of arrival (DOA) estimation for multi-input multi-output (MIMO) radar, and derives a reduced-dimension multiple signal classification (MUSIC) algorithm therein that can avoid the high computational cost within two-dimension MUSIC (2D-MUSic) algorithm.
Abstract: This letter discusses the problem of direction of departure (DOD) and direction of arrival (DOA) estimation for multi-input multi-output (MIMO) radar, and derives a reduced-dimension multiple signal classification (MUSIC) algorithm therein. The proposed algorithm, which only requires one-dimension search, can avoid the high computational cost within two-dimension MUSIC (2D-MUSIC) algorithm. We illustrate that the algorithm has better performance ESPRIT algorithm, and has very close performance to 2D-MUSIC algorithm. Further our algorithm requires no pair matching. Simulation results verify the usefulness of our algorithm.

Journal ArticleDOI
08 Jan 2010-PLOS ONE
TL;DR: The mTLE alterations observed in functional connectivity and topological properties may be used to define tentative disease markers, including altered small-world properties in patients, along with smaller degree of connectivity, increased n-to-1 connectivity, smaller absolute clustering coefficients and shorter absolute path length.
Abstract: Background The functional architecture of the human brain has been extensively described in terms of functional connectivity networks, detected from the low–frequency coherent neuronal fluctuations that can be observed in a resting state condition. Little is known, so far, about the changes in functional connectivity and in the topological properties of functional networks, associated with different brain diseases. Methodology/Principal Findings In this study, we investigated alterations related to mesial temporal lobe epilepsy (mTLE), using resting state functional magnetic resonance imaging on 18 mTLE patients and 27 healthy controls. Functional connectivity among 90 cortical and subcortical regions was measured by temporal correlation. The related values were analyzed to construct a set of undirected graphs. Compared to controls, mTLE patients showed significantly increased connectivity within the medial temporal lobes, but also significantly decreased connectivity within the frontal and parietal lobes, and between frontal and parietal lobes. Our findings demonstrated that a large number of areas in the default-mode network of mTLE patients showed a significantly decreased number of connections to other regions. Furthermore, we observed altered small-world properties in patients, along with smaller degree of connectivity, increased n-to-1 connectivity, smaller absolute clustering coefficients and shorter absolute path length. Conclusions/Significance We suggest that the mTLE alterations observed in functional connectivity and topological properties may be used to define tentative disease markers.

Journal ArticleDOI
TL;DR: This study demonstrates for the first time that serum miRNA profiles can serve as novel and noninvasive biomarkers for HBV infection and HBV-positive HCC diagnosis.
Abstract: Diagnosis of hepatitis B virus (HBV)-positive hepatocellular carcinoma (HCC), particularly HCC independent of cirrhosis etiology, presents a great challenge because of a lack of biomarkers. Here we test the hypothesis that expression profiles of microRNAs (miRNAs) in serum can serve as biomarkers for diagnosis of HBV infection and HBV-positive HCC. We recruited 513 subjects (210 controls and 135 HBV-, 48 hepatitis C virus (HCV)-, and 120 HCC-affected individuals) and employed a strategy of initial screening by Solexa sequencing followed by validation with TaqMan probe-based quantitative reverse transcription-PCR assay. First, because of a close link between chronic hepatitis B and HCC, we compared miRNA expression profiles in HBV serum with that in control serum and successfully obtained 13 miRNAs that were differentially expressed in HBV serum. This 13-miRNA-based biomarker accurately discriminated not only HBV cases from controls and HCV cases, but also HBV-positive HCC cases from control and HBV cases. Second, we directly compared miRNA expressions in HCC serum with those in controls and identified 6 miRNAs that were significantly upregulated in HCC samples. Interestingly, 2 of these miRNAs, miR-375 and miR-92a, were also identified by our first approach as HBV specific. When we employed 3 of these miRNAs (miR-25, miR-375, and let-7f) as biomarkers, we could clearly separate HCC cases from controls, and miR-375 alone had an ROC of 0.96 (specificity: 96%; sensitivity: 100%) in HCC prediction. In conclusion, our study demonstrates for the first time that serum miRNA profiles can serve as novel and noninvasive biomarkers for HBV infection and HBV-positive HCC diagnosis.

Journal ArticleDOI
TL;DR: In this paper, potential corridors were identified in Jinan City, China, using the least-cost path method, and green space networks were developed and improved based on graph theory and the gravity model, and revealed problems in the current greening plan.

Journal ArticleDOI
TL;DR: Findings indicate that UC MSCT results in amelioration of disease activity, serologic changes, and stabilization of proinflammatory cytokines in patients with severe and treatment-refractory SLE.
Abstract: Objective Umbilical cord (UC)-derived mesenchymal stem cells (MSCs) have shown marked therapeutic effects in a number of diseases in animal studies, based on their potential for self-renewal and differentiation. No data are available on the effectiveness of UC MSC transplantation (MSCT) in human autoimmune disease. This study was undertaken to assess the efficacy and safety of allogeneic UC MSCT in patients with severe and treatment-refractory systemic lupus erythematosus (SLE). Methods We conducted a single-arm trial that involved 16 SLE patients whose disease was refractory to standard treatment or who had life-threatening visceral involvement. All of the patients gave consent and underwent UC MSCT. Clinical changes were evaluated before and after transplantation using the SLE Disease Activity Index (SLEDAI), measurement of serum antinuclear antibody (ANA), anti-double-stranded DNA (anti-dsDNA) antibody, serum complement C3 and C4, and albumin levels, and assessment of and renal function. Evaluation of potential mechanisms of MSCT effects focused on the percentage of peripheral blood Treg cells and serum levels of cytokines. Results From April 2007 to July 2009, a total of 16 patients with active SLE were enrolled and underwent UC MSCT. The median followup time after MSCT was 8.25 months (range 3-28 months). Significant improvements in the SLEDAI score, levels of serum ANA, anti-dsDNA antibody, serum albumin, and complement C3, and renal function were observed. Clinical remission was accompanied by an increase in peripheral Treg cells and a re-established balance between Th1- and Th2-related cytokines. Significant reduction in disease activity was achieved in all patients, and there has been no recurrence to date and no treatment-related deaths. Conclusion Our findings indicate that UC MSCT results in amelioration of disease activity, serologic changes, and stabilization of proinflammatory cytokines. These data provide a foundation for conducting a randomized controlled trial of this new therapy for severe and treatment-refractory SLE.

Journal ArticleDOI
TL;DR: The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas and to identify those modeling approaches that minimize the errors in the simulated fluxes of the urban energy balance.
Abstract: A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated To date, no comparison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes Here, the methods and first results from an extensive international comparison of 33 models are presented The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas The degree of complexity included in the models is outlined and impacts on model performance are discussed During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds) Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada The aim of the comparison is twofold: to identify those modeling approaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes In general, the simpler models perform as well as the more complex models based on all statistical measures Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux

Journal ArticleDOI
TL;DR: Allogeneic MSCT in patients with refractory lupus resulted in amelioration of disease activity, improvement in serological markers and stabilisation of renal function, and MSCT appears beneficial in treatment of patients with SLE refracted to conventional treatment options.
Abstract: Objective To determine the safety and efficacy of allogeneic mesenchymal stem cell transplantation (MSCT) in refractory systemic lupus erythematosus (SLE). Methods A total of 15 patients with persistently active SLE underwent MSCT. Outcome was evaluated by changes in the SLE disease activity index (SLEDAI), serological features (anti-nuclear antibodies and anti-double-stranded DNA (anti-dsDNA)), renal function and percentage of peripheral blood regulatory T cells. Results From 11 March 2007 to 4 November 2008, 15 patients with persistently active SLE were enrolled and underwent MSCT. The mean follow-up period was 17.2±9.5 months. A total of 13 patients have been followed for more than 12 months. All patients clinically improved following treatment with mesenchymal stem cells with a marked decrease in the SLEDAI score and 24 h proteinuria. At 12-month follow-up, SLEDAI scores decreased from 12.2±3.3 to 3.2±2.8 and proteinuria decreased from 2505.0±1323.9 to 858.0±800.7 mg/24 h (all p Conclusion Allogeneic MSCT in patients with refractory lupus resulted in amelioration of disease activity, improvement in serological markers and stabilisation of renal function. MSCT appears beneficial in treatment of patients with SLE refractory to conventional treatment options.

Journal ArticleDOI
TL;DR: An introduction to research advances in disagreement-based semi-supervised learning is provided, where multiple learners are trained for the task and the disagreements among the learners are exploited during the semi- supervised learning process.
Abstract: In many real-world tasks, there are abundant unlabeled examples but the number of labeled training examples is limited, because labeling the examples requires human efforts and expertise. So, semi-supervised learning which tries to exploit unlabeled examples to improve learning performance has become a hot topic. Disagreement-based semi-supervised learning is an interesting paradigm, where multiple learners are trained for the task and the disagreements among the learners are exploited during the semi-supervised learning process. This survey article provides an introduction to research advances in this paradigm.

Journal ArticleDOI
TL;DR: In this paper, a detailed LAM-ICPMS U-Pb dating and LAMMC-IpMS Lu-Hf isotope analysis were carried out on zircons from nine samples of basement metamorphic rocks in the southern Cathaysia Block, South China.

Journal ArticleDOI
30 Apr 2010-Cell
TL;DR: NLRC5 is identified as a negative regulator that blocks two central components of the NF-kappaB and type I interferon signaling pathways and suggest an important role for NLRC5 in homeostatic control of innate immunity.

Journal ArticleDOI
TL;DR: In this article, the leakage current suppressing method, in which all common-mode paths are considered, has been proposed, and the existing full-bridge and half-bridge type converters have been analyzed by using the developed model and rules, and then, a new fullbridge-type converter structure and a compensation strategy for half-branched inverter have been presented finally.
Abstract: Due to the characteristics of low cost and high efficiency, the transformerless photovoltaic (PV) grid-connected inverters have been popularized in the application of solar electric generation system in residential market. Unfortunately, the leakage current through the stray capacitors between the PV array and the ground is harmful. This paper focuses on the leakage current suppressing method, in which all common-mode paths are considered. First, the common-mode analytical model at switching frequency is developed, and the rules of eliminating switching frequency common-mode source are summarized based on this model. The existing full-bridge- and half-bridge-type converters have been analyzed by using the developed model and rules, and then, a new full-bridge-type converter structure and a compensation strategy for half-bridge-type inverter have been presented finally.

Journal ArticleDOI
TL;DR: The generalized diversity gain is derived and it is shown that, with a guaranteed primary outage probability, the full diversity order is achieved using the proposed adaptive cooperation scheme.
Abstract: In this correspondence, an adaptive cooperation diversity scheme with best-relay selection is proposed for multiple-relay cognitive radio networks to improve the performance of secondary transmissions while ensuring the quality of service (QoS) of primary transmissions. Exact closed-form expressions of the outage probability of secondary transmissions, referred to as secondary outage probability, are derived under the constraint of satisfying a required outage probability of primary transmissions (primary outage probability) for both the traditional non-cooperation and the proposed adaptive cooperation schemes over Rayleigh fading channels. Numerical and simulation results show that, with a guaranteed primary outage probability, a floor of the secondary outage probability occurs in high signal-to-noise ratio (SNR) regions. Moreover, the outage probability floor of the adaptive cooperation scheme is lower than that of the non-cooperation scenario, which illustrates the advantage of the proposed scheme. In addition, we generalize the traditional definition of the diversity gain, which can not be applied directly in cognitive radio networks since mutual interference between the primary and secondary users should be considered. We derive the generalized diversity gain and show that, with a guaranteed primary outage probability, the full diversity order is achieved using the proposed adaptive cooperation scheme.