scispace - formally typeset
Search or ask a question
Institution

Nanjing University

EducationNanjing, China
About: Nanjing University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Catalysis & Population. The organization has 85961 authors who have published 105504 publications receiving 2289036 citations. The organization is also known as: NJU & Nanking University.


Papers
More filters
Journal ArticleDOI
Sihai Yang1, Xiaohui Zhang1, Jia-Xing Yue1, Dacheng Tian1, Jian-Qun Chen1 
TL;DR: It is suggested that recent tandem duplication played a major role in NBS-encoding gene expansion in perennial species, and could compensate for the longer generation time in woody perennial species e.g. duplication and recombination.
Abstract: Most disease resistance genes in plants encode NBS-LRR proteins. However, in woody species, little is known about the evolutionary history of these genes. Here, we identified 459 and 330 respective NBS-LRRs in grapevine and poplar genomes. We subsequently investigated protein motif composition, phylogenetic relationships and physical locations. We found significant excesses of recent duplications in perennial species, compared with those of annuals, represented by rice and Arabidopsis. Consequently, we observed higher nucleotide identity among paralogs and a higher percentage of NBS-encoding genes positioned in numerous clusters in the grapevine and poplar. These results suggested that recent tandem duplication played a major role in NBS-encoding gene expansion in perennial species. These duplication events, together with a higher probability of recombination revealed in this study, could compensate for the longer generation time in woody perennial species e.g. duplication and recombination could serve to generate novel resistance specificities. In addition, we observed extensive species-specific expansion in TIR-NBS-encoding genes. Non-TIR-NBS-encoding genes were poly- or paraphyletic, i.e. genes from three or more plant species were nested in different clades, suggesting different evolutionary patterns between these two gene types.

373 citations

Journal ArticleDOI
Zhong He1, Cheng Sun1, Shaogui Yang1, Ding Youchao1, Huan He1, Zhiliang Wang 
TL;DR: Bi(2)WO(6) was successfully synthesized by a facile hydrothermal method, and characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and BET, showing mainly square-plate-like morphologies with a short edge and the average crystalline size was in the range of 50-150 nm.

372 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed LAM-ICPMS U-Pb dating and LAMMC-IpMS Lu-Hf isotope analysis were carried out on zircons from nine samples of basement metamorphic rocks in the southern Cathaysia Block, South China.

372 citations

Journal ArticleDOI
TL;DR: An unprecedented singlet oxygen mediated Fenton-like process catalyzed by ∼2-nm Fe2O3 nanoparticles distributed inside multiwalled carbon nanotubes with inner diameter of ∼7 nm, showing exotic catalytic activities, unforeseen adsorption-dependent selectivity, and pH stability for the oxidation of organic compounds.
Abstract: For several decades, the iron-based Fenton-like catalysis has been believed to be mediated by hydroxyl radicals or high-valent iron-oxo species, while only sporadic evidence supported the generation of singlet oxygen (1O2) in the Haber-Weiss cycle. Herein, we report an unprecedented singlet oxygen mediated Fenton-like process catalyzed by ∼2-nm Fe2O3 nanoparticles distributed inside multiwalled carbon nanotubes with inner diameter of ∼7 nm. Unlike the traditional Fenton-like processes, this delicately designed system was shown to selectively oxidize the organic dyes that could be adsorbed with oxidation rates linearly proportional to the adsorption affinity. It also exhibited remarkably higher degradation activity (22.5 times faster) toward a model pollutant methylene blue than its nonconfined analog. Strikingly, the unforeseen stability at pH value up to 9.0 greatly expands the use of Fenton-like catalysts in alkaline conditions. This work represents a fundamental breakthrough toward the design and understanding of the Fenton-like system under nanoconfinement, might cause implications in other fields, especially in biological systems.

372 citations

Journal ArticleDOI
TL;DR: In this paper, a p-n heterojunction photocatalyst n-BiVO4@p-MoS2 with core-shell structure was successfully fabricated for the first time through a facile in-situ hydrothermal method.
Abstract: The novel p–n heterojunction photocatalyst n-BiVO4@p-MoS2 with core–shell structure was successfully fabricated for the first time through a facile in-situ hydrothermal method, in which MoS2 shell thickness was easily tuned by varying the concentration of MoS2 precursor in the solution. The photocatalytic performances of samples were systematically investigated via the photocatalytic reduction of Cr6+ and oxidation of crystal violet (CV) under visible-light irradiation. The BiVO4@MoS2 samples exhibited excellent photocatalytic performance, among which, the BiVO4@MoS2 (10 wt%) sample with MoS2 shell 300 nm thickness, showed the highest photoreduction and photooxidation activities. The enhanced photocatalytic activities could be attributed to the suppression of charge recombination, the high specific surface area and strong adsorption ability toward the pollutant molecule, and the enhanced or tunable light absorption of BiVO4@MoS2. Especially, the core–shell structure geometry also increases the contact area between BiVO4 and MoS2, which facilitates the charge transfer at the BiVO4/MoS2 interface. The photocatalytic mechanism of BiVO4@MoS2 for reduction of Cr6+ and oxidation of CV was discussed in detail. Moreover, 12 photocatalytic degradation intermediates and products of CV were also identified by the gas chromatography–mass spectrometer (GC–MS).

371 citations


Authors

Showing all 86514 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Zhenan Bao169865106571
Gang Chen1673372149819
Peter G. Schultz15689389716
Xiang Zhang1541733117576
Rui Zhang1512625107917
Yi Yang143245692268
Markku Kulmala142148785179
Jian Yang1421818111166
Wei Huang139241793522
Bin Liu138218187085
Jun Lu135152699767
Hui Li1352982105903
Lei Zhang135224099365
Network Information
Related Institutions (5)
Peking University
181K papers, 4.1M citations

97% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

95% related

Fudan University
117.9K papers, 2.6M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20242
2023276
20221,087
20219,130
20208,684
20198,203